paligemma-vqa

This model is a fine-tuned version of google/paligemma-3b-pt-224 on the vq_av2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.5618 0.5886 1000 0.5531
0.5268 1.1772 2000 0.5335
0.5099 1.7657 3000 0.5071

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.2.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
2.92B params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for statking/paligemma-vqa

Adapter
(173)
this model