Add stopping criteria to readme example
#2
by
dmayhem93
- opened
README.md
CHANGED
@@ -31,6 +31,14 @@ tokenizer = AutoTokenizer.from_pretrained("StabilityAI/stablelm-tuned-alpha-3b")
|
|
31 |
model = AutoModelForCausalLM.from_pretrained("StabilityAI/stablelm-tuned-alpha-3b")
|
32 |
model.half().cuda()
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version)
|
35 |
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
|
36 |
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
@@ -38,7 +46,7 @@ system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version)
|
|
38 |
- StableLM will refuse to participate in anything that could harm a human.
|
39 |
"""
|
40 |
|
41 |
-
prompt = f"{system_prompt}<|USER|>What's your mood today
|
42 |
|
43 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
44 |
tokens = model.generate(
|
@@ -46,6 +54,7 @@ tokens = model.generate(
|
|
46 |
max_new_tokens=64,
|
47 |
temperature=0.7,
|
48 |
do_sample=True,
|
|
|
49 |
)
|
50 |
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
51 |
```
|
|
|
31 |
model = AutoModelForCausalLM.from_pretrained("StabilityAI/stablelm-tuned-alpha-3b")
|
32 |
model.half().cuda()
|
33 |
|
34 |
+
class StopOnTokens(StoppingCriteria):
|
35 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
36 |
+
stop_ids = [50278, 50279, 50277, 1, 0]
|
37 |
+
for stop_id in stop_ids:
|
38 |
+
if input_ids[0][-1] == stop_id:
|
39 |
+
return True
|
40 |
+
return False
|
41 |
+
|
42 |
system_prompt = """<|SYSTEM|># StableLM Tuned (Alpha version)
|
43 |
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
|
44 |
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
|
|
46 |
- StableLM will refuse to participate in anything that could harm a human.
|
47 |
"""
|
48 |
|
49 |
+
prompt = f"{system_prompt}<|USER|>What's your mood today?<|ASSISTANT|>"
|
50 |
|
51 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
52 |
tokens = model.generate(
|
|
|
54 |
max_new_tokens=64,
|
55 |
temperature=0.7,
|
56 |
do_sample=True,
|
57 |
+
stopping_criteria=StoppingCriteriaList([StopOnTokens()])
|
58 |
)
|
59 |
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|
60 |
```
|