End of training
Browse files- README.md +86 -196
- config.json +90 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,89 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: sayeed99/segformer-b3-fashion
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b3-fashion-finetuned-polo-segments-v1.3
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b3-fashion-finetuned-polo-segments-v1.3
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0429
|
21 |
+
- Mean Iou: 0.9091
|
22 |
+
- Mean Accuracy: 0.9403
|
23 |
+
- Overall Accuracy: 0.9851
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Collar: 0.9095
|
26 |
+
- Accuracy Polo: 0.9879
|
27 |
+
- Accuracy Lines-cuff: 0.8355
|
28 |
+
- Accuracy Lines-chest: 0.9287
|
29 |
+
- Accuracy Human: 0.9883
|
30 |
+
- Accuracy Background: 0.9918
|
31 |
+
- Accuracy Tape: nan
|
32 |
+
- Iou Unlabeled: nan
|
33 |
+
- Iou Collar: 0.8597
|
34 |
+
- Iou Polo: 0.9688
|
35 |
+
- Iou Lines-cuff: 0.7831
|
36 |
+
- Iou Lines-chest: 0.8815
|
37 |
+
- Iou Human: 0.9746
|
38 |
+
- Iou Background: 0.9872
|
39 |
+
- Iou Tape: nan
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 6e-05
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 30
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Accuracy Tape | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | Iou Tape |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|:--------:|
|
70 |
+
| 0.2226 | 2.5 | 20 | 0.0915 | 0.7423 | 0.7696 | 0.9768 | nan | 0.8423 | 0.9889 | 0.0156 | 0.8004 | 0.9801 | 0.9903 | nan | nan | 0.8056 | 0.9535 | 0.0156 | 0.7379 | 0.9604 | 0.9808 | nan |
|
71 |
+
| 0.0879 | 5.0 | 40 | 0.0644 | 0.8691 | 0.8908 | 0.9806 | nan | 0.8701 | 0.9901 | 0.7111 | 0.7998 | 0.9908 | 0.9829 | nan | nan | 0.8372 | 0.9618 | 0.6922 | 0.7759 | 0.9674 | 0.9801 | nan |
|
72 |
+
| 0.0599 | 7.5 | 60 | 0.0525 | 0.8927 | 0.9223 | 0.9838 | nan | 0.9040 | 0.9855 | 0.7850 | 0.8792 | 0.9893 | 0.9911 | nan | nan | 0.8543 | 0.9668 | 0.7381 | 0.8389 | 0.9725 | 0.9855 | nan |
|
73 |
+
| 0.0517 | 10.0 | 80 | 0.0502 | 0.9011 | 0.9358 | 0.9834 | nan | 0.9092 | 0.9874 | 0.8282 | 0.9140 | 0.9884 | 0.9873 | nan | nan | 0.8556 | 0.9661 | 0.7672 | 0.8625 | 0.9710 | 0.9843 | nan |
|
74 |
+
| 0.0494 | 12.5 | 100 | 0.0479 | 0.9039 | 0.9372 | 0.9837 | nan | 0.9074 | 0.9885 | 0.8218 | 0.9300 | 0.9865 | 0.9892 | nan | nan | 0.8575 | 0.9655 | 0.7714 | 0.8721 | 0.9713 | 0.9857 | nan |
|
75 |
+
| 0.0507 | 15.0 | 120 | 0.0451 | 0.9082 | 0.9415 | 0.9844 | nan | 0.9126 | 0.9875 | 0.8438 | 0.9271 | 0.9869 | 0.9910 | nan | nan | 0.8592 | 0.9669 | 0.7864 | 0.8774 | 0.9728 | 0.9867 | nan |
|
76 |
+
| 0.0382 | 17.5 | 140 | 0.0460 | 0.9074 | 0.9382 | 0.9840 | nan | 0.9056 | 0.9897 | 0.8399 | 0.9181 | 0.9831 | 0.9930 | nan | nan | 0.8585 | 0.9651 | 0.7862 | 0.8760 | 0.9717 | 0.9870 | nan |
|
77 |
+
| 0.0365 | 20.0 | 160 | 0.0448 | 0.9104 | 0.9423 | 0.9846 | nan | 0.9118 | 0.9869 | 0.8552 | 0.9210 | 0.9904 | 0.9887 | nan | nan | 0.8581 | 0.9686 | 0.7969 | 0.8793 | 0.9736 | 0.9857 | nan |
|
78 |
+
| 0.0437 | 22.5 | 180 | 0.0435 | 0.9084 | 0.9397 | 0.9849 | nan | 0.9087 | 0.9881 | 0.8299 | 0.9323 | 0.9888 | 0.9907 | nan | nan | 0.8595 | 0.9686 | 0.7788 | 0.8824 | 0.9742 | 0.9869 | nan |
|
79 |
+
| 0.0462 | 25.0 | 200 | 0.0433 | 0.9077 | 0.9378 | 0.9850 | nan | 0.9076 | 0.9881 | 0.8308 | 0.9202 | 0.9886 | 0.9915 | nan | nan | 0.8597 | 0.9685 | 0.7789 | 0.8776 | 0.9743 | 0.9871 | nan |
|
80 |
+
| 0.0569 | 27.5 | 220 | 0.0428 | 0.9089 | 0.9396 | 0.9851 | nan | 0.9108 | 0.9879 | 0.8349 | 0.9241 | 0.9883 | 0.9917 | nan | nan | 0.8599 | 0.9688 | 0.7822 | 0.8808 | 0.9746 | 0.9872 | nan |
|
81 |
+
| 0.0357 | 30.0 | 240 | 0.0429 | 0.9091 | 0.9403 | 0.9851 | nan | 0.9095 | 0.9879 | 0.8355 | 0.9287 | 0.9883 | 0.9918 | nan | nan | 0.8597 | 0.9688 | 0.7831 | 0.8815 | 0.9746 | 0.9872 | nan |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.44.0
|
87 |
+
- Pytorch 2.4.0+cu121
|
88 |
+
- Datasets 2.20.0
|
89 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sayeed99/segformer-b3-fashion",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
18,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "collar",
|
33 |
+
"2": "polo",
|
34 |
+
"3": "lines-cuff",
|
35 |
+
"4": "lines-chest",
|
36 |
+
"5": "human",
|
37 |
+
"6": "background",
|
38 |
+
"7": "tape"
|
39 |
+
},
|
40 |
+
"image_size": 224,
|
41 |
+
"initializer_range": 0.02,
|
42 |
+
"label2id": {
|
43 |
+
"background": 6,
|
44 |
+
"collar": 1,
|
45 |
+
"human": 5,
|
46 |
+
"lines-chest": 4,
|
47 |
+
"lines-cuff": 3,
|
48 |
+
"polo": 2,
|
49 |
+
"tape": 7,
|
50 |
+
"unlabeled": 0
|
51 |
+
},
|
52 |
+
"layer_norm_eps": 1e-06,
|
53 |
+
"mlp_ratios": [
|
54 |
+
4,
|
55 |
+
4,
|
56 |
+
4,
|
57 |
+
4
|
58 |
+
],
|
59 |
+
"model_type": "segformer",
|
60 |
+
"num_attention_heads": [
|
61 |
+
1,
|
62 |
+
2,
|
63 |
+
5,
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"num_channels": 3,
|
67 |
+
"num_encoder_blocks": 4,
|
68 |
+
"patch_sizes": [
|
69 |
+
7,
|
70 |
+
3,
|
71 |
+
3,
|
72 |
+
3
|
73 |
+
],
|
74 |
+
"reshape_last_stage": true,
|
75 |
+
"semantic_loss_ignore_index": 255,
|
76 |
+
"sr_ratios": [
|
77 |
+
8,
|
78 |
+
4,
|
79 |
+
2,
|
80 |
+
1
|
81 |
+
],
|
82 |
+
"strides": [
|
83 |
+
4,
|
84 |
+
2,
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
"torch_dtype": "float32",
|
89 |
+
"transformers_version": "4.44.0"
|
90 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f1f67984fb3a014fc787b528a446e56bd79c035b0813388ec3b8bc602d327ec
|
3 |
+
size 188998232
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bb2ae05fc3df09b092cc63589946f954419c67cb168b5655c075f5c6d969b86
|
3 |
+
size 5304
|