sshk commited on
Commit
3d28af3
·
verified ·
1 Parent(s): 97c4227

End of training

Browse files
Files changed (4) hide show
  1. README.md +86 -196
  2. config.json +90 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,89 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: sayeed99/segformer-b3-fashion
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b3-fashion-finetuned-polo-segments-v1.3
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b3-fashion-finetuned-polo-segments-v1.3
17
+
18
+ This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0429
21
+ - Mean Iou: 0.9091
22
+ - Mean Accuracy: 0.9403
23
+ - Overall Accuracy: 0.9851
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Collar: 0.9095
26
+ - Accuracy Polo: 0.9879
27
+ - Accuracy Lines-cuff: 0.8355
28
+ - Accuracy Lines-chest: 0.9287
29
+ - Accuracy Human: 0.9883
30
+ - Accuracy Background: 0.9918
31
+ - Accuracy Tape: nan
32
+ - Iou Unlabeled: nan
33
+ - Iou Collar: 0.8597
34
+ - Iou Polo: 0.9688
35
+ - Iou Lines-cuff: 0.7831
36
+ - Iou Lines-chest: 0.8815
37
+ - Iou Human: 0.9746
38
+ - Iou Background: 0.9872
39
+ - Iou Tape: nan
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 6e-05
59
+ - train_batch_size: 8
60
+ - eval_batch_size: 8
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 30
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Accuracy Tape | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | Iou Tape |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|:--------:|
70
+ | 0.2226 | 2.5 | 20 | 0.0915 | 0.7423 | 0.7696 | 0.9768 | nan | 0.8423 | 0.9889 | 0.0156 | 0.8004 | 0.9801 | 0.9903 | nan | nan | 0.8056 | 0.9535 | 0.0156 | 0.7379 | 0.9604 | 0.9808 | nan |
71
+ | 0.0879 | 5.0 | 40 | 0.0644 | 0.8691 | 0.8908 | 0.9806 | nan | 0.8701 | 0.9901 | 0.7111 | 0.7998 | 0.9908 | 0.9829 | nan | nan | 0.8372 | 0.9618 | 0.6922 | 0.7759 | 0.9674 | 0.9801 | nan |
72
+ | 0.0599 | 7.5 | 60 | 0.0525 | 0.8927 | 0.9223 | 0.9838 | nan | 0.9040 | 0.9855 | 0.7850 | 0.8792 | 0.9893 | 0.9911 | nan | nan | 0.8543 | 0.9668 | 0.7381 | 0.8389 | 0.9725 | 0.9855 | nan |
73
+ | 0.0517 | 10.0 | 80 | 0.0502 | 0.9011 | 0.9358 | 0.9834 | nan | 0.9092 | 0.9874 | 0.8282 | 0.9140 | 0.9884 | 0.9873 | nan | nan | 0.8556 | 0.9661 | 0.7672 | 0.8625 | 0.9710 | 0.9843 | nan |
74
+ | 0.0494 | 12.5 | 100 | 0.0479 | 0.9039 | 0.9372 | 0.9837 | nan | 0.9074 | 0.9885 | 0.8218 | 0.9300 | 0.9865 | 0.9892 | nan | nan | 0.8575 | 0.9655 | 0.7714 | 0.8721 | 0.9713 | 0.9857 | nan |
75
+ | 0.0507 | 15.0 | 120 | 0.0451 | 0.9082 | 0.9415 | 0.9844 | nan | 0.9126 | 0.9875 | 0.8438 | 0.9271 | 0.9869 | 0.9910 | nan | nan | 0.8592 | 0.9669 | 0.7864 | 0.8774 | 0.9728 | 0.9867 | nan |
76
+ | 0.0382 | 17.5 | 140 | 0.0460 | 0.9074 | 0.9382 | 0.9840 | nan | 0.9056 | 0.9897 | 0.8399 | 0.9181 | 0.9831 | 0.9930 | nan | nan | 0.8585 | 0.9651 | 0.7862 | 0.8760 | 0.9717 | 0.9870 | nan |
77
+ | 0.0365 | 20.0 | 160 | 0.0448 | 0.9104 | 0.9423 | 0.9846 | nan | 0.9118 | 0.9869 | 0.8552 | 0.9210 | 0.9904 | 0.9887 | nan | nan | 0.8581 | 0.9686 | 0.7969 | 0.8793 | 0.9736 | 0.9857 | nan |
78
+ | 0.0437 | 22.5 | 180 | 0.0435 | 0.9084 | 0.9397 | 0.9849 | nan | 0.9087 | 0.9881 | 0.8299 | 0.9323 | 0.9888 | 0.9907 | nan | nan | 0.8595 | 0.9686 | 0.7788 | 0.8824 | 0.9742 | 0.9869 | nan |
79
+ | 0.0462 | 25.0 | 200 | 0.0433 | 0.9077 | 0.9378 | 0.9850 | nan | 0.9076 | 0.9881 | 0.8308 | 0.9202 | 0.9886 | 0.9915 | nan | nan | 0.8597 | 0.9685 | 0.7789 | 0.8776 | 0.9743 | 0.9871 | nan |
80
+ | 0.0569 | 27.5 | 220 | 0.0428 | 0.9089 | 0.9396 | 0.9851 | nan | 0.9108 | 0.9879 | 0.8349 | 0.9241 | 0.9883 | 0.9917 | nan | nan | 0.8599 | 0.9688 | 0.7822 | 0.8808 | 0.9746 | 0.9872 | nan |
81
+ | 0.0357 | 30.0 | 240 | 0.0429 | 0.9091 | 0.9403 | 0.9851 | nan | 0.9095 | 0.9879 | 0.8355 | 0.9287 | 0.9883 | 0.9918 | nan | nan | 0.8597 | 0.9688 | 0.7831 | 0.8815 | 0.9746 | 0.9872 | nan |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.44.0
87
+ - Pytorch 2.4.0+cu121
88
+ - Datasets 2.20.0
89
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sayeed99/segformer-b3-fashion",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 18,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "collar",
33
+ "2": "polo",
34
+ "3": "lines-cuff",
35
+ "4": "lines-chest",
36
+ "5": "human",
37
+ "6": "background",
38
+ "7": "tape"
39
+ },
40
+ "image_size": 224,
41
+ "initializer_range": 0.02,
42
+ "label2id": {
43
+ "background": 6,
44
+ "collar": 1,
45
+ "human": 5,
46
+ "lines-chest": 4,
47
+ "lines-cuff": 3,
48
+ "polo": 2,
49
+ "tape": 7,
50
+ "unlabeled": 0
51
+ },
52
+ "layer_norm_eps": 1e-06,
53
+ "mlp_ratios": [
54
+ 4,
55
+ 4,
56
+ 4,
57
+ 4
58
+ ],
59
+ "model_type": "segformer",
60
+ "num_attention_heads": [
61
+ 1,
62
+ 2,
63
+ 5,
64
+ 8
65
+ ],
66
+ "num_channels": 3,
67
+ "num_encoder_blocks": 4,
68
+ "patch_sizes": [
69
+ 7,
70
+ 3,
71
+ 3,
72
+ 3
73
+ ],
74
+ "reshape_last_stage": true,
75
+ "semantic_loss_ignore_index": 255,
76
+ "sr_ratios": [
77
+ 8,
78
+ 4,
79
+ 2,
80
+ 1
81
+ ],
82
+ "strides": [
83
+ 4,
84
+ 2,
85
+ 2,
86
+ 2
87
+ ],
88
+ "torch_dtype": "float32",
89
+ "transformers_version": "4.44.0"
90
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f1f67984fb3a014fc787b528a446e56bd79c035b0813388ec3b8bc602d327ec
3
+ size 188998232
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bb2ae05fc3df09b092cc63589946f954419c67cb168b5655c075f5c6d969b86
3
+ size 5304