segformer-b3-fashion-finetuned-polo-segments-v1.3

This model is a fine-tuned version of sayeed99/segformer-b3-fashion on the sshk/polo-badges-segmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0429
  • Mean Iou: 0.9091
  • Mean Accuracy: 0.9403
  • Overall Accuracy: 0.9851
  • Accuracy Unlabeled: nan
  • Accuracy Collar: 0.9095
  • Accuracy Polo: 0.9879
  • Accuracy Lines-cuff: 0.8355
  • Accuracy Lines-chest: 0.9287
  • Accuracy Human: 0.9883
  • Accuracy Background: 0.9918
  • Accuracy Tape: nan
  • Iou Unlabeled: nan
  • Iou Collar: 0.8597
  • Iou Polo: 0.9688
  • Iou Lines-cuff: 0.7831
  • Iou Lines-chest: 0.8815
  • Iou Human: 0.9746
  • Iou Background: 0.9872
  • Iou Tape: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Collar Accuracy Polo Accuracy Lines-cuff Accuracy Lines-chest Accuracy Human Accuracy Background Accuracy Tape Iou Unlabeled Iou Collar Iou Polo Iou Lines-cuff Iou Lines-chest Iou Human Iou Background Iou Tape
0.2226 2.5 20 0.0915 0.7423 0.7696 0.9768 nan 0.8423 0.9889 0.0156 0.8004 0.9801 0.9903 nan nan 0.8056 0.9535 0.0156 0.7379 0.9604 0.9808 nan
0.0879 5.0 40 0.0644 0.8691 0.8908 0.9806 nan 0.8701 0.9901 0.7111 0.7998 0.9908 0.9829 nan nan 0.8372 0.9618 0.6922 0.7759 0.9674 0.9801 nan
0.0599 7.5 60 0.0525 0.8927 0.9223 0.9838 nan 0.9040 0.9855 0.7850 0.8792 0.9893 0.9911 nan nan 0.8543 0.9668 0.7381 0.8389 0.9725 0.9855 nan
0.0517 10.0 80 0.0502 0.9011 0.9358 0.9834 nan 0.9092 0.9874 0.8282 0.9140 0.9884 0.9873 nan nan 0.8556 0.9661 0.7672 0.8625 0.9710 0.9843 nan
0.0494 12.5 100 0.0479 0.9039 0.9372 0.9837 nan 0.9074 0.9885 0.8218 0.9300 0.9865 0.9892 nan nan 0.8575 0.9655 0.7714 0.8721 0.9713 0.9857 nan
0.0507 15.0 120 0.0451 0.9082 0.9415 0.9844 nan 0.9126 0.9875 0.8438 0.9271 0.9869 0.9910 nan nan 0.8592 0.9669 0.7864 0.8774 0.9728 0.9867 nan
0.0382 17.5 140 0.0460 0.9074 0.9382 0.9840 nan 0.9056 0.9897 0.8399 0.9181 0.9831 0.9930 nan nan 0.8585 0.9651 0.7862 0.8760 0.9717 0.9870 nan
0.0365 20.0 160 0.0448 0.9104 0.9423 0.9846 nan 0.9118 0.9869 0.8552 0.9210 0.9904 0.9887 nan nan 0.8581 0.9686 0.7969 0.8793 0.9736 0.9857 nan
0.0437 22.5 180 0.0435 0.9084 0.9397 0.9849 nan 0.9087 0.9881 0.8299 0.9323 0.9888 0.9907 nan nan 0.8595 0.9686 0.7788 0.8824 0.9742 0.9869 nan
0.0462 25.0 200 0.0433 0.9077 0.9378 0.9850 nan 0.9076 0.9881 0.8308 0.9202 0.9886 0.9915 nan nan 0.8597 0.9685 0.7789 0.8776 0.9743 0.9871 nan
0.0569 27.5 220 0.0428 0.9089 0.9396 0.9851 nan 0.9108 0.9879 0.8349 0.9241 0.9883 0.9917 nan nan 0.8599 0.9688 0.7822 0.8808 0.9746 0.9872 nan
0.0357 30.0 240 0.0429 0.9091 0.9403 0.9851 nan 0.9095 0.9879 0.8355 0.9287 0.9883 0.9918 nan nan 0.8597 0.9688 0.7831 0.8815 0.9746 0.9872 nan

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
47.2M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for sshk/segformer-b3-fashion-finetuned-polo-segments-v1.3

Finetuned
(4)
this model