srikarvar's picture
Add new SentenceTransformer model.
ecd652d verified
metadata
base_model: srikarvar/fine_tuned_model_14
datasets:
  - sentence-transformers/stsb
language:
  - en
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:5749
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: The man talked to a girl over the internet camera.
    sentences:
      - A group of elderly people pose around a dining table.
      - A teenager talks to a girl over a webcam.
      - There is no 'still' that is not relative to some other object.
  - source_sentence: A woman is writing something.
    sentences:
      - Two eagles are perched on a branch.
      - >-
        It refers to the maximum f-stop (which is defined as the ratio of focal
        length to effective aperture diameter).
      - A woman is chopping green onions.
  - source_sentence: The player shoots the winning points.
    sentences:
      - Minimum wage laws hurt the least skilled, least productive the most.
      - The basketball player is about to score points for his team.
      - Sheep are grazing in the field in front of a line of trees.
  - source_sentence: >-
      Stars form in star-formation regions, which itself develop from molecular
      clouds.
    sentences:
      - >-
        Although I believe Searle is mistaken, I don't think you have found the
        problem.
      - >-
        It may be possible for a solar system like ours to exist outside of a
        galaxy.
      - >-
        A blond-haired child performing on the trumpet in front of a house while
        his younger brother watches.
  - source_sentence: >-
      While Queen may refer to both Queen regent (sovereign) or Queen consort,
      the King has always been the sovereign.
    sentences:
      - At first, I thought this is a bit of a tricky question.
      - A man sitting on the floor in a room is strumming a guitar.
      - >-
        There is a very good reason not to refer to the Queen's spouse as "King"
        - because they aren't the King.
model-index:
  - name: SentenceTransformer based on srikarvar/fine_tuned_model_14
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.889793665485415
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8883233702954302
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8793654739739823
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8869417782770835
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8805966685936737
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8883233702954302
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.889793669321279
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8883229609391554
            name: Spearman Dot
          - type: pearson_max
            value: 0.889793669321279
            name: Pearson Max
          - type: spearman_max
            value: 0.8883233702954302
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.8584930609199624
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8582999046265778
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8554072155842902
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8574561907026155
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8560078981251059
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8582999046265778
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8584930626613443
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8582999046265778
            name: Spearman Dot
          - type: pearson_max
            value: 0.8584930626613443
            name: Pearson Max
          - type: spearman_max
            value: 0.8582999046265778
            name: Spearman Max

SentenceTransformer based on srikarvar/fine_tuned_model_14

This is a sentence-transformers model finetuned from srikarvar/fine_tuned_model_14 on the stsb dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: srikarvar/fine_tuned_model_14
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_14-sts")
# Run inference
sentences = [
    'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
    'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
    'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8898
spearman_cosine 0.8883
pearson_manhattan 0.8794
spearman_manhattan 0.8869
pearson_euclidean 0.8806
spearman_euclidean 0.8883
pearson_dot 0.8898
spearman_dot 0.8883
pearson_max 0.8898
spearman_max 0.8883

Semantic Similarity

Metric Value
pearson_cosine 0.8585
spearman_cosine 0.8583
pearson_manhattan 0.8554
spearman_manhattan 0.8575
pearson_euclidean 0.856
spearman_euclidean 0.8583
pearson_dot 0.8585
spearman_dot 0.8583
pearson_max 0.8585
spearman_max 0.8583

Training Details

Training Dataset

stsb

  • Dataset: stsb at ab7a5ac
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 11.08 tokens
    • max: 30 tokens
    • min: 7 tokens
    • mean: 11.05 tokens
    • max: 30 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A plane is taking off. An air plane is taking off. 1.0
    A man is playing a large flute. A man is playing a flute. 0.76
    A man is spreading shreded cheese on a pizza. A man is spreading shredded cheese on an uncooked pizza. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

stsb

  • Dataset: stsb at ab7a5ac
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 16.55 tokens
    • max: 47 tokens
    • min: 7 tokens
    • mean: 16.5 tokens
    • max: 47 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss sts-dev_spearman_cosine sts-test_spearman_cosine
0.2778 100 0.0359 0.0243 0.8834 -
0.5556 200 0.0225 0.0243 0.8743 -
0.8333 300 0.0219 0.0218 0.8821 -
1.1111 400 0.0184 0.0236 0.8843 -
1.3889 500 0.0138 0.0216 0.8847 -
1.6667 600 0.0135 0.0212 0.8849 -
1.9444 700 0.0136 0.0211 0.8870 -
2.2222 800 0.0096 0.0215 0.8903 -
2.5 900 0.0091 0.0211 0.8881 -
2.7778 1000 0.0089 0.0216 0.8872 -
3.0556 1100 0.0084 0.0208 0.8886 -
3.3333 1200 0.0065 0.0208 0.8883 -
3.6111 1300 0.006 0.0212 0.8881 -
3.8889 1400 0.0062 0.0210 0.8883 -
4.0 1440 - - - 0.8583

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}