|
--- |
|
language: |
|
- pl |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- finetuned |
|
- gguf |
|
- 8bit |
|
inference: false |
|
pipeline_tag: text-generation |
|
base_model: speakleash/Bielik-11B-v2.0-Instruct |
|
--- |
|
<p align="center"> |
|
<img src="https://huggingface.co./speakleash/Bielik-7B-Instruct-v0.1-GGUF/raw/main/speakleash_cyfronet.png"> |
|
</p> |
|
|
|
# Bielik-11B-v2.2-Instruct-FP8 |
|
|
|
This model was obtained by quantizing the weights and activations of [Bielik-11B-v.2.0-Instruct](https://huggingface.co./speakleash/Bielik-11B-v2.0-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.0 or SGLang. |
|
AutoFP8 is used for quantization. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. |
|
|
|
FP8 compuation is supported on Nvidia GPUs with compute capability > 8.9 (Ada Lovelace, Hopper). |
|
|
|
**DISCLAIMER: Be aware that quantised models show reduced response quality and possible hallucinations!** |
|
|
|
## Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "speakleash/Bielik-11B-v2.0-Instruct-FP8" |
|
|
|
sampling_params = SamplingParams(temperature=0.2, top_p=0.95, max_tokens=4096) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "Jesteś pomocnym asystentem Bielik."}, |
|
{"role": "user", "content": "Kim był Mikołaj Kopernik i z czego zasłynął?"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, tokenize=False) |
|
|
|
llm = LLM(model=model_id, max_model_len=4096) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
|
|
## Use with SGLang Runtime |
|
Launch a server of SGLang Runtime: |
|
|
|
``` |
|
python -m sglang.launch_server --model-path speakleash/Bielik-11B-v2.0-Instruct-FP8 --port 30000 |
|
``` |
|
|
|
Then you can send http request or use OpenAI Compatible API. |
|
|
|
```python |
|
import openai |
|
client = openai.Client( |
|
base_url="http://127.0.0.1:30000/v1", api_key="EMPTY") |
|
|
|
response = client.chat.completions.create( |
|
model="default", |
|
messages=[ |
|
{"role": "system", "content": "Jesteś pomocnym asystentem Bielik."}, |
|
{"role": "user", "content": "Kim był Mikołaj Kopernik i z czego zasłynął?"}, |
|
], |
|
temperature=0, |
|
max_tokens=4096, |
|
) |
|
print(response) |
|
|
|
``` |
|
|
|
### Model description: |
|
|
|
* **Developed by:** [SpeakLeash](https://speakleash.org/) & [ACK Cyfronet AGH](https://www.cyfronet.pl/) |
|
* **Language:** Polish |
|
* **Model type:** causal decoder-only |
|
* **Quant from:** [Bielik-11B-v2.0-Instruct](https://huggingface.co./speakleash/Bielik-11B-v2.0-Instruct) |
|
* **Finetuned from:** [Bielik-11B-v2](https://huggingface.co./speakleash/Bielik-11B-v2) |
|
* **License:** Apache 2.0 and [Terms of Use](https://bielik.ai/terms/) |
|
|
|
### Responsible for model quantization |
|
* [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/)<sup>SpeakLeash</sup> - team leadership, conceptualizing, calibration data preparation, process creation and quantized model delivery. |
|
|
|
## Contact Us |
|
|
|
If you have any questions or suggestions, please use the discussion tab. If you want to contact us directly, join our [Discord SpeakLeash](https://discord.gg/CPBxPce4). |