|
import argparse |
|
import itertools |
|
import json |
|
import os |
|
import re |
|
from functools import partial |
|
|
|
import torch |
|
from torchvision.ops.boxes import box_area |
|
from tqdm import tqdm |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
ds_collections = { |
|
'refcoco_val': 'data/refcoco/refcoco_val.jsonl', |
|
'refcoco_testA': 'data/refcoco/refcoco_testA.jsonl', |
|
'refcoco_testB': 'data/refcoco/refcoco_testB.jsonl', |
|
'refcoco+_val': 'data/refcoco+/refcoco+_val.jsonl', |
|
'refcoco+_testA': 'data/refcoco+/refcoco+_testA.jsonl', |
|
'refcoco+_testB': 'data/refcoco+/refcoco+_testB.jsonl', |
|
'refcocog_val': 'data/refcocog/refcocog_val.jsonl', |
|
'refcocog_test': 'data/refcocog/refcocog_test.jsonl', |
|
} |
|
|
|
|
|
def box_iou(boxes1, boxes2): |
|
area1 = box_area(boxes1) |
|
area2 = box_area(boxes2) |
|
|
|
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) |
|
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) |
|
|
|
wh = (rb - lt).clamp(min=0) |
|
inter = wh[:, :, 0] * wh[:, :, 1] |
|
|
|
union = area1[:, None] + area2 - inter |
|
|
|
iou = inter / union |
|
return iou, union |
|
|
|
|
|
def collate_fn(batches, tokenizer): |
|
|
|
texts = [_['text'] for _ in batches] |
|
bboxes = [_['bbox'] for _ in batches] |
|
hws = [_['hw'] for _ in batches] |
|
|
|
input_ids = tokenizer(texts, return_tensors='pt', padding='longest') |
|
|
|
return input_ids.input_ids, input_ids.attention_mask, bboxes, hws |
|
|
|
|
|
class RefCOCODataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, test, tokenizer, prompt): |
|
self.datas = open(test).readlines() |
|
self.tokenizer = tokenizer |
|
self.prompt = prompt |
|
|
|
def __len__(self): |
|
return len(self.datas) |
|
|
|
def __getitem__(self, idx): |
|
data = json.loads(self.datas[idx].strip()) |
|
image = data['image'] |
|
text = data['sent'] |
|
bbox = data['bbox'] |
|
|
|
w, h = data['width'], data['height'] |
|
|
|
return { |
|
'text': self.prompt.format(image, text), |
|
'bbox': bbox, |
|
'hw': (h, w), |
|
} |
|
|
|
|
|
class InferenceSampler(torch.utils.data.sampler.Sampler): |
|
|
|
def __init__(self, size): |
|
self._size = int(size) |
|
assert size > 0 |
|
self._rank = torch.distributed.get_rank() |
|
self._world_size = torch.distributed.get_world_size() |
|
self._local_indices = self._get_local_indices(size, self._world_size, |
|
self._rank) |
|
|
|
@staticmethod |
|
def _get_local_indices(total_size, world_size, rank): |
|
shard_size = total_size // world_size |
|
left = total_size % world_size |
|
shard_sizes = [shard_size + int(r < left) for r in range(world_size)] |
|
|
|
begin = sum(shard_sizes[:rank]) |
|
end = min(sum(shard_sizes[:rank + 1]), total_size) |
|
return range(begin, end) |
|
|
|
def __iter__(self): |
|
yield from self._local_indices |
|
|
|
def __len__(self): |
|
return len(self._local_indices) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--checkpoint', type=str, default='') |
|
parser.add_argument('--dataset', type=str, default='') |
|
parser.add_argument('--batch-size', type=int, default=1) |
|
parser.add_argument('--num-workers', type=int, default=1) |
|
args = parser.parse_args() |
|
|
|
torch.distributed.init_process_group( |
|
backend='nccl', |
|
world_size=int(os.getenv('WORLD_SIZE', '1')), |
|
rank=int(os.getenv('RANK', '0')), |
|
) |
|
|
|
torch.cuda.set_device(torch.distributed.get_rank()) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.checkpoint, device_map='cuda', trust_remote_code=True).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, |
|
trust_remote_code=True) |
|
tokenizer.padding_side = 'left' |
|
tokenizer.pad_token_id = tokenizer.eod_id |
|
|
|
prompt = '<img>{}</img><ref>{}</ref><box>' |
|
|
|
dataset = RefCOCODataset(test=ds_collections[args.dataset], |
|
tokenizer=tokenizer, |
|
prompt=prompt) |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
dataset=dataset, |
|
sampler=InferenceSampler(len(dataset)), |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=True, |
|
collate_fn=partial(collate_fn, tokenizer=tokenizer), |
|
) |
|
|
|
outputs = [] |
|
for _, (input_ids, attention_mask, bboxes, |
|
hws) in tqdm(enumerate(dataloader)): |
|
pred = model.generate( |
|
input_ids=input_ids.cuda(), |
|
attention_mask=attention_mask.cuda(), |
|
do_sample=False, |
|
num_beams=1, |
|
max_new_tokens=28, |
|
min_new_tokens=10, |
|
length_penalty=1, |
|
num_return_sequences=1, |
|
use_cache=True, |
|
pad_token_id=tokenizer.eod_id, |
|
eos_token_id=tokenizer.eod_id, |
|
) |
|
answers = [ |
|
tokenizer.decode(_[input_ids.size(1):].cpu(), |
|
skip_special_tokens=True) for _ in pred |
|
] |
|
|
|
for bbox, hw, answer in zip(bboxes, hws, answers): |
|
outputs.append({ |
|
'answer': answer, |
|
'gt_bbox': bbox, |
|
'hw': hw, |
|
}) |
|
|
|
torch.distributed.barrier() |
|
|
|
world_size = torch.distributed.get_world_size() |
|
merged_outputs = [None for _ in range(world_size)] |
|
torch.distributed.all_gather_object(merged_outputs, outputs) |
|
|
|
merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] |
|
PATTERN = re.compile(r'\((.*?)\),\((.*?)\)') |
|
|
|
if torch.distributed.get_rank() == 0: |
|
correct = total_cnt = 0 |
|
for i, output in enumerate(merged_outputs): |
|
predict_bbox = re.findall(PATTERN, output['answer']) |
|
try: |
|
if ',' not in predict_bbox[0][0] or ',' not in predict_bbox[0][ |
|
1]: |
|
predict_bbox = (0., 0., 0., 0.) |
|
else: |
|
x1, y1 = [ |
|
float(tmp) for tmp in predict_bbox[0][0].split(',') |
|
] |
|
x2, y2 = [ |
|
float(tmp) for tmp in predict_bbox[0][1].split(',') |
|
] |
|
predict_bbox = (x1, y1, x2, y2) |
|
except: |
|
predict_bbox = (0., 0., 0., 0.) |
|
target_bbox = torch.tensor(output['gt_bbox'], |
|
dtype=torch.float32).view(-1, 4) |
|
predict_bbox = torch.tensor(predict_bbox, |
|
dtype=torch.float32).view(-1, 4) / 999 |
|
predict_bbox[:, 0::2] *= output['hw'][1] |
|
predict_bbox[:, 1::2] *= output['hw'][0] |
|
iou, _ = box_iou(predict_bbox, target_bbox) |
|
iou = iou.item() |
|
total_cnt += 1 |
|
if iou >= 0.5: |
|
correct += 1 |
|
|
|
print(f'Precision @ 1: {correct / total_cnt} \n') |
|
torch.distributed.barrier() |
|
|