import argparse import itertools import json import os import re from functools import partial import torch from torchvision.ops.boxes import box_area from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer ds_collections = { 'refcoco_val': 'data/refcoco/refcoco_val.jsonl', 'refcoco_testA': 'data/refcoco/refcoco_testA.jsonl', 'refcoco_testB': 'data/refcoco/refcoco_testB.jsonl', 'refcoco+_val': 'data/refcoco+/refcoco+_val.jsonl', 'refcoco+_testA': 'data/refcoco+/refcoco+_testA.jsonl', 'refcoco+_testB': 'data/refcoco+/refcoco+_testB.jsonl', 'refcocog_val': 'data/refcocog/refcocog_val.jsonl', 'refcocog_test': 'data/refcocog/refcocog_test.jsonl', } def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def collate_fn(batches, tokenizer): texts = [_['text'] for _ in batches] bboxes = [_['bbox'] for _ in batches] hws = [_['hw'] for _ in batches] input_ids = tokenizer(texts, return_tensors='pt', padding='longest') return input_ids.input_ids, input_ids.attention_mask, bboxes, hws class RefCOCODataset(torch.utils.data.Dataset): def __init__(self, test, tokenizer, prompt): self.datas = open(test).readlines() self.tokenizer = tokenizer self.prompt = prompt def __len__(self): return len(self.datas) def __getitem__(self, idx): data = json.loads(self.datas[idx].strip()) image = data['image'] text = data['sent'] bbox = data['bbox'] w, h = data['width'], data['height'] return { 'text': self.prompt.format(image, text), 'bbox': bbox, 'hw': (h, w), } class InferenceSampler(torch.utils.data.sampler.Sampler): def __init__(self, size): self._size = int(size) assert size > 0 self._rank = torch.distributed.get_rank() self._world_size = torch.distributed.get_world_size() self._local_indices = self._get_local_indices(size, self._world_size, self._rank) @staticmethod def _get_local_indices(total_size, world_size, rank): shard_size = total_size // world_size left = total_size % world_size shard_sizes = [shard_size + int(r < left) for r in range(world_size)] begin = sum(shard_sizes[:rank]) end = min(sum(shard_sizes[:rank + 1]), total_size) return range(begin, end) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--dataset', type=str, default='') parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--num-workers', type=int, default=1) args = parser.parse_args() torch.distributed.init_process_group( backend='nccl', world_size=int(os.getenv('WORLD_SIZE', '1')), rank=int(os.getenv('RANK', '0')), ) torch.cuda.set_device(torch.distributed.get_rank()) model = AutoModelForCausalLM.from_pretrained( args.checkpoint, device_map='cuda', trust_remote_code=True).eval() tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True) tokenizer.padding_side = 'left' tokenizer.pad_token_id = tokenizer.eod_id prompt = '{}{}' dataset = RefCOCODataset(test=ds_collections[args.dataset], tokenizer=tokenizer, prompt=prompt) dataloader = torch.utils.data.DataLoader( dataset=dataset, sampler=InferenceSampler(len(dataset)), batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=True, collate_fn=partial(collate_fn, tokenizer=tokenizer), ) outputs = [] for _, (input_ids, attention_mask, bboxes, hws) in tqdm(enumerate(dataloader)): pred = model.generate( input_ids=input_ids.cuda(), attention_mask=attention_mask.cuda(), do_sample=False, num_beams=1, max_new_tokens=28, min_new_tokens=10, length_penalty=1, num_return_sequences=1, use_cache=True, pad_token_id=tokenizer.eod_id, eos_token_id=tokenizer.eod_id, ) answers = [ tokenizer.decode(_[input_ids.size(1):].cpu(), skip_special_tokens=True) for _ in pred ] for bbox, hw, answer in zip(bboxes, hws, answers): outputs.append({ 'answer': answer, 'gt_bbox': bbox, 'hw': hw, }) torch.distributed.barrier() world_size = torch.distributed.get_world_size() merged_outputs = [None for _ in range(world_size)] torch.distributed.all_gather_object(merged_outputs, outputs) merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] PATTERN = re.compile(r'\((.*?)\),\((.*?)\)') if torch.distributed.get_rank() == 0: correct = total_cnt = 0 for i, output in enumerate(merged_outputs): predict_bbox = re.findall(PATTERN, output['answer']) try: if ',' not in predict_bbox[0][0] or ',' not in predict_bbox[0][ 1]: predict_bbox = (0., 0., 0., 0.) else: x1, y1 = [ float(tmp) for tmp in predict_bbox[0][0].split(',') ] x2, y2 = [ float(tmp) for tmp in predict_bbox[0][1].split(',') ] predict_bbox = (x1, y1, x2, y2) except: predict_bbox = (0., 0., 0., 0.) target_bbox = torch.tensor(output['gt_bbox'], dtype=torch.float32).view(-1, 4) predict_bbox = torch.tensor(predict_bbox, dtype=torch.float32).view(-1, 4) / 999 predict_bbox[:, 0::2] *= output['hw'][1] predict_bbox[:, 1::2] *= output['hw'][0] iou, _ = box_iou(predict_bbox, target_bbox) iou = iou.item() total_cnt += 1 if iou >= 0.5: correct += 1 print(f'Precision @ 1: {correct / total_cnt} \n') torch.distributed.barrier()