Spaces:
Sleeping
Sleeping
File size: 5,358 Bytes
b2b50b7 85e4ef9 b2b50b7 85e4ef9 b2b50b7 0fe9a0c 85e4ef9 0fe9a0c ba5848d 0fe9a0c b2b50b7 85e4ef9 2c52598 67a4038 2c52598 ba5848d 85e4ef9 84f793e 85e4ef9 ba5848d 84f793e 2c52598 b2b50b7 67a4038 ba5848d 84f793e 85e4ef9 ba5848d b2b50b7 ba5848d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the CodeParrot model and tokenizer
model_name = "codeparrot/codeparrot-small" # Replace with your desired model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Function to generate smart contract code
def generate_smart_contract(language, requirements):
try:
# Create a prompt for the model
prompt = f"Generate a {language} smart contract with the following requirements: {requirements}"
# Tokenize the input
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
# Generate code
outputs = model.generate(**inputs, max_length=500) # Adjust max_length as needed
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_code
except Exception as e:
return f"Error generating smart contract: {str(e)}"
# Custom CSS for a dark box with green text and copy button
custom_css = """
body {
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
color: #fff;
perspective: 1000px;
overflow: hidden;
}
.gradio-container {
background: rgba(255, 255, 255, 0.1);
border-radius: 15px;
padding: 20px;
box-shadow: 0 4px 30px rgba(0, 0, 0, 0.1);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.3);
transform-style: preserve-3d;
transform: rotateY(0deg) rotateX(0deg);
transition: transform 0.5s ease;
}
.gradio-container:hover {
transform: rotateY(10deg) rotateX(10deg);
}
.gradio-input, .gradio-output {
background: rgba(255, 255, 255, 0.2);
border: none;
border-radius: 10px;
padding: 10px;
color: #fff;
transform-style: preserve-3d;
transition: transform 0.3s ease;
}
.gradio-input:focus, .gradio-output:focus {
background: rgba(255, 255, 255, 0.3);
outline: none;
transform: translateZ(20px);
}
.gradio-button {
background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
border: none;
border-radius: 10px;
color: #fff;
padding: 10px 20px;
font-size: 16px;
cursor: pointer;
transition: background 0.3s ease, transform 0.3s ease;
transform-style: preserve-3d;
}
.gradio-button:hover {
background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%);
transform: translateZ(10px);
}
h1 {
text-align: center;
font-size: 2.5em;
margin-bottom: 20px;
color: white; /* White title color */
transform-style: preserve-3d;
transform: translateZ(30px);
}
@keyframes float {
0% {
transform: translateY(0) translateZ(0);
}
50% {
transform: translateY(-10px) translateZ(10px);
}
100% {
transform: translateY(0) translateZ(0);
}
}
.gradio-container {
animation: float 4s ease-in-out infinite;
}
/* Dark box with green text for output */
.output-box {
background: #1e1e1e; /* Dark background */
padding: 15px;
border-radius: 10px;
color: #00ff00; /* Green text */
font-family: 'Courier New', Courier, monospace;
font-size: 14px;
line-height: 1.5;
overflow-x: auto;
white-space: pre-wrap; /* Preserve formatting */
position: relative;
}
/* Copy button */
.copy-button {
position: absolute;
top: 10px;
right: 10px;
background: #2575fc;
border: none;
border-radius: 5px;
color: #fff;
padding: 5px 10px;
font-size: 12px;
cursor: pointer;
transition: background 0.3s ease;
}
.copy-button:hover {
background: #6a11cb;
}
"""
# JavaScript for the copy button
copy_js = """
<script>
function copyCode() {
const codeElement = document.querySelector('.output-box pre');
const codeText = codeElement.innerText;
navigator.clipboard.writeText(codeText).then(() => {
alert('Code copied to clipboard!');
});
}
</script>
"""
# Gradio interface for the app
def generate_contract(language, requirements):
return generate_smart_contract(language, requirements)
# Dropdown options for programming languages
languages = ["Solidity", "Vyper", "Rust", "JavaScript", "Python"]
# Create a custom layout
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# Smart Contract Generator")
gr.Markdown("Generate smart contracts using AI.")
# Inject JavaScript
gr.HTML(copy_js)
# Output box with copy button
with gr.Column():
output_box = gr.HTML(label="Generated Smart Contract", elem_classes="output-box")
copy_button = gr.Button("Copy Code", elem_classes="copy-button")
# Input row
with gr.Row(equal_height=True, variant="panel"):
language_dropdown = gr.Dropdown(label="Programming Language", choices=languages, value="Solidity")
requirements_input = gr.Textbox(label="Requirements", placeholder="e.g., ERC20 token with minting functionality")
submit_button = gr.Button("Generate", variant="primary")
# Link the function to the inputs and output
submit_button.click(
generate_contract,
inputs=[language_dropdown, requirements_input],
outputs=output_box
)
# Launch the Gradio app
demo.launch() |