Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,13 @@
|
|
1 |
# app.py
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
# Configure 8-bit quantization
|
10 |
-
quantization_config = BitsAndBytesConfig(
|
11 |
-
load_in_8bit=True,
|
12 |
-
llm_int8_threshold=6.0
|
13 |
-
)
|
14 |
-
else:
|
15 |
-
# Skip quantization if CUDA is not available
|
16 |
-
quantization_config = None
|
17 |
-
|
18 |
-
# Load the Hugging Face model and tokenizer
|
19 |
-
model_name = "gpt2" # Smaller and faster model
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
-
model = AutoModelForCausalLM.from_pretrained(
|
22 |
-
model_name,
|
23 |
-
quantization_config=quantization_config,
|
24 |
-
device_map="auto" if torch.cuda.is_available() else None
|
25 |
-
)
|
26 |
|
27 |
# Groq API configuration
|
28 |
GROQ_API_KEY = "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"
|
@@ -48,7 +33,7 @@ def generate_smart_contract(language, requirements):
|
|
48 |
|
49 |
# Use the Hugging Face model to generate code
|
50 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
51 |
-
outputs = model.generate(**inputs, max_length=
|
52 |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
|
54 |
# Enhance the code using Groq API
|
@@ -56,16 +41,107 @@ def generate_smart_contract(language, requirements):
|
|
56 |
|
57 |
return enhanced_code
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Gradio interface for the app
|
60 |
def generate_contract(language, requirements):
|
61 |
return generate_smart_contract(language, requirements)
|
62 |
|
63 |
interface = gr.Interface(
|
64 |
fn=generate_contract,
|
65 |
-
inputs=[
|
66 |
-
|
|
|
|
|
|
|
67 |
title="Smart Contract Generator",
|
68 |
-
description="Generate smart contracts using AI."
|
|
|
69 |
)
|
70 |
|
71 |
# Launch the Gradio app
|
|
|
1 |
# app.py
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
|
7 |
+
# Load the Hugging Face model and tokenizer (only once)
|
8 |
+
model_name = "distilgpt2" # Smaller and faster model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Groq API configuration
|
13 |
GROQ_API_KEY = "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"
|
|
|
33 |
|
34 |
# Use the Hugging Face model to generate code
|
35 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
outputs = model.generate(**inputs, max_length=150) # Reduced max_length
|
37 |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
|
39 |
# Enhance the code using Groq API
|
|
|
41 |
|
42 |
return enhanced_code
|
43 |
|
44 |
+
# Custom CSS for a 3D CGI Figma-like feel
|
45 |
+
custom_css = """
|
46 |
+
body {
|
47 |
+
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
48 |
+
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
|
49 |
+
color: #fff;
|
50 |
+
perspective: 1000px;
|
51 |
+
overflow: hidden;
|
52 |
+
}
|
53 |
+
|
54 |
+
.gradio-container {
|
55 |
+
background: rgba(255, 255, 255, 0.1);
|
56 |
+
border-radius: 15px;
|
57 |
+
padding: 20px;
|
58 |
+
box-shadow: 0 4px 30px rgba(0, 0, 0, 0.1);
|
59 |
+
backdrop-filter: blur(10px);
|
60 |
+
border: 1px solid rgba(255, 255, 255, 0.3);
|
61 |
+
transform-style: preserve-3d;
|
62 |
+
transform: rotateY(0deg) rotateX(0deg);
|
63 |
+
transition: transform 0.5s ease;
|
64 |
+
}
|
65 |
+
|
66 |
+
.gradio-container:hover {
|
67 |
+
transform: rotateY(10deg) rotateX(10deg);
|
68 |
+
}
|
69 |
+
|
70 |
+
.gradio-input, .gradio-output {
|
71 |
+
background: rgba(255, 255, 255, 0.2);
|
72 |
+
border: none;
|
73 |
+
border-radius: 10px;
|
74 |
+
padding: 10px;
|
75 |
+
color: #fff;
|
76 |
+
transform-style: preserve-3d;
|
77 |
+
transition: transform 0.3s ease;
|
78 |
+
}
|
79 |
+
|
80 |
+
.gradio-input:focus, .gradio-output:focus {
|
81 |
+
background: rgba(255, 255, 255, 0.3);
|
82 |
+
outline: none;
|
83 |
+
transform: translateZ(20px);
|
84 |
+
}
|
85 |
+
|
86 |
+
.gradio-button {
|
87 |
+
background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
|
88 |
+
border: none;
|
89 |
+
border-radius: 10px;
|
90 |
+
color: #fff;
|
91 |
+
padding: 10px 20px;
|
92 |
+
font-size: 16px;
|
93 |
+
cursor: pointer;
|
94 |
+
transition: background 0.3s ease, transform 0.3s ease;
|
95 |
+
transform-style: preserve-3d;
|
96 |
+
}
|
97 |
+
|
98 |
+
.gradio-button:hover {
|
99 |
+
background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%);
|
100 |
+
transform: translateZ(10px);
|
101 |
+
}
|
102 |
+
|
103 |
+
h1 {
|
104 |
+
text-align: center;
|
105 |
+
font-size: 2.5em;
|
106 |
+
margin-bottom: 20px;
|
107 |
+
background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
|
108 |
+
-webkit-background-clip: text;
|
109 |
+
-webkit-text-fill-color: transparent;
|
110 |
+
transform-style: preserve-3d;
|
111 |
+
transform: translateZ(30px);
|
112 |
+
}
|
113 |
+
|
114 |
+
@keyframes float {
|
115 |
+
0% {
|
116 |
+
transform: translateY(0) translateZ(0);
|
117 |
+
}
|
118 |
+
50% {
|
119 |
+
transform: translateY(-10px) translateZ(10px);
|
120 |
+
}
|
121 |
+
100% {
|
122 |
+
transform: translateY(0) translateZ(0);
|
123 |
+
}
|
124 |
+
}
|
125 |
+
|
126 |
+
.gradio-container {
|
127 |
+
animation: float 4s ease-in-out infinite;
|
128 |
+
}
|
129 |
+
"""
|
130 |
+
|
131 |
# Gradio interface for the app
|
132 |
def generate_contract(language, requirements):
|
133 |
return generate_smart_contract(language, requirements)
|
134 |
|
135 |
interface = gr.Interface(
|
136 |
fn=generate_contract,
|
137 |
+
inputs=[
|
138 |
+
gr.Textbox(label="Programming Language", placeholder="e.g., Solidity"),
|
139 |
+
gr.Textbox(label="Requirements", placeholder="e.g., ERC20 token with minting functionality")
|
140 |
+
],
|
141 |
+
outputs=gr.Textbox(label="Generated Smart Contract"),
|
142 |
title="Smart Contract Generator",
|
143 |
+
description="Generate smart contracts using AI.",
|
144 |
+
css=custom_css
|
145 |
)
|
146 |
|
147 |
# Launch the Gradio app
|