cross-image-attention / models /stable_diffusion.py
yuvalalaluf's picture
initial commit
82ef366
raw
history blame
11.2 kB
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
from diffusers.models import AutoencoderKL
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg
from diffusers.schedulers import KarrasDiffusionSchedulers
from tqdm import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from config import Range
from models.unet_2d_condition import FreeUUNet2DConditionModel
class CrossImageAttentionStableDiffusionPipeline(StableDiffusionPipeline):
""" A modification of the standard StableDiffusionPipeline to incorporate our cross-image attention."""
def __init__(self, vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: FreeUUNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
swap_guidance_scale: float = 1.0,
cross_image_attention_range: Range = Range(10, 90),
# DDPM addition
zs: Optional[List[torch.Tensor]] = None
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs[0].shape[0]:])}
timesteps = timesteps[-zs[0].shape[0]:]
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
op = tqdm(timesteps[-zs[0].shape[0]:])
n_timesteps = len(timesteps[-zs[0].shape[0]:])
count = 0
for t in op:
i = t_to_idx[int(t)]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
noise_pred_swap = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={'perform_swap': True},
return_dict=False,
)[0]
noise_pred_no_swap = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={'perform_swap': False},
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
_, noise_swap_pred_text = noise_pred_swap.chunk(2)
noise_no_swap_pred_uncond, _ = noise_pred_no_swap.chunk(2)
noise_pred = noise_no_swap_pred_uncond + guidance_scale * (
noise_swap_pred_text - noise_no_swap_pred_uncond)
else:
is_cross_image_step = cross_image_attention_range.start <= i <= cross_image_attention_range.end
if swap_guidance_scale > 1.0 and is_cross_image_step:
swapping_strengths = np.linspace(swap_guidance_scale,
max(swap_guidance_scale / 2, 1.0),
n_timesteps)
swapping_strength = swapping_strengths[count]
noise_pred = noise_pred_no_swap + swapping_strength * (noise_pred_swap - noise_pred_no_swap)
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_swap, guidance_rescale=guidance_rescale)
else:
noise_pred = noise_pred_swap
latents = torch.stack([
self.perform_ddpm_step(t_to_idx, zs[latent_idx], latents[latent_idx], t, noise_pred[latent_idx], eta)
for latent_idx in range(latents.shape[0])
])
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
# progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
count += 1
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def perform_ddpm_step(self, t_to_idx, zs, latents, t, noise_pred, eta):
idx = t_to_idx[int(t)]
z = zs[idx] if not zs is None else None
# 1. get previous step value (=t-1)
prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
# 5. compute variance: "sigma_t(Ξ·)" -> see formula (16)
# Οƒ_t = sqrt((1 βˆ’ Ξ±_tβˆ’1)/(1 βˆ’ Ξ±_t)) * sqrt(1 βˆ’ Ξ±_t/Ξ±_tβˆ’1)
# variance = self.scheduler._get_variance(timestep, prev_timestep)
variance = self.get_variance(t)
std_dev_t = eta * variance ** (0.5)
# Take care of asymetric reverse process (asyrp)
model_output_direction = noise_pred
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
# 8. Add noice if eta > 0
if eta > 0:
if z is None:
z = torch.randn(noise_pred.shape, device=self.device)
sigma_z = eta * variance ** (0.5) * z
prev_sample = prev_sample + sigma_z
return prev_sample
def get_variance(self, timestep):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance