Spaces:
Runtime error
Runtime error
File size: 11,212 Bytes
82ef366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
from diffusers.models import AutoencoderKL
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg
from diffusers.schedulers import KarrasDiffusionSchedulers
from tqdm import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from config import Range
from models.unet_2d_condition import FreeUUNet2DConditionModel
class CrossImageAttentionStableDiffusionPipeline(StableDiffusionPipeline):
""" A modification of the standard StableDiffusionPipeline to incorporate our cross-image attention."""
def __init__(self, vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: FreeUUNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
swap_guidance_scale: float = 1.0,
cross_image_attention_range: Range = Range(10, 90),
# DDPM addition
zs: Optional[List[torch.Tensor]] = None
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs[0].shape[0]:])}
timesteps = timesteps[-zs[0].shape[0]:]
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
op = tqdm(timesteps[-zs[0].shape[0]:])
n_timesteps = len(timesteps[-zs[0].shape[0]:])
count = 0
for t in op:
i = t_to_idx[int(t)]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
noise_pred_swap = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={'perform_swap': True},
return_dict=False,
)[0]
noise_pred_no_swap = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={'perform_swap': False},
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
_, noise_swap_pred_text = noise_pred_swap.chunk(2)
noise_no_swap_pred_uncond, _ = noise_pred_no_swap.chunk(2)
noise_pred = noise_no_swap_pred_uncond + guidance_scale * (
noise_swap_pred_text - noise_no_swap_pred_uncond)
else:
is_cross_image_step = cross_image_attention_range.start <= i <= cross_image_attention_range.end
if swap_guidance_scale > 1.0 and is_cross_image_step:
swapping_strengths = np.linspace(swap_guidance_scale,
max(swap_guidance_scale / 2, 1.0),
n_timesteps)
swapping_strength = swapping_strengths[count]
noise_pred = noise_pred_no_swap + swapping_strength * (noise_pred_swap - noise_pred_no_swap)
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_swap, guidance_rescale=guidance_rescale)
else:
noise_pred = noise_pred_swap
latents = torch.stack([
self.perform_ddpm_step(t_to_idx, zs[latent_idx], latents[latent_idx], t, noise_pred[latent_idx], eta)
for latent_idx in range(latents.shape[0])
])
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
# progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
count += 1
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def perform_ddpm_step(self, t_to_idx, zs, latents, t, noise_pred, eta):
idx = t_to_idx[int(t)]
z = zs[idx] if not zs is None else None
# 1. get previous step value (=t-1)
prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
# 5. compute variance: "sigma_t(Ξ·)" -> see formula (16)
# Ο_t = sqrt((1 β Ξ±_tβ1)/(1 β Ξ±_t)) * sqrt(1 β Ξ±_t/Ξ±_tβ1)
# variance = self.scheduler._get_variance(timestep, prev_timestep)
variance = self.get_variance(t)
std_dev_t = eta * variance ** (0.5)
# Take care of asymetric reverse process (asyrp)
model_output_direction = noise_pred
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
# 8. Add noice if eta > 0
if eta > 0:
if z is None:
z = torch.randn(noise_pred.shape, device=self.device)
sigma_z = eta * variance ** (0.5) * z
prev_sample = prev_sample + sigma_z
return prev_sample
def get_variance(self, timestep):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
|