Spaces:
Runtime error
Runtime error
import torch | |
import requests | |
import rembg | |
import random | |
import gradio as gr | |
import numpy | |
from PIL import Image | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
# Load the pipeline | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline", | |
torch_dtype=torch.float16 | |
) | |
# Feel free to tune the scheduler! | |
# `timestep_spacing` parameter is not supported in older versions of `diffusers` | |
# so there may be performance degradations | |
# We recommend using `diffusers==0.20.2` | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
pipeline.to('cuda:0') | |
def inference(input_img, num_inference_steps, guidance_scale, seed ): | |
# Download an example image. | |
cond = Image.open(input_img) | |
if seed==0: | |
seed = random.randint(1, 1000000) | |
# Run the pipeline! | |
#result = pipeline(cond, num_inference_steps=75).images[0] | |
result = pipeline(cond, num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(pipeline.device).manual_seed(int(seed))).images[0] | |
# for general real and synthetic images of general objects | |
# usually it is enough to have around 28 inference steps | |
# for images with delicate details like faces (real or anime) | |
# you may need 75-100 steps for the details to construct | |
#result.show() | |
#result.save("output.png") | |
return result | |
def remove_background(result): | |
print(type(result)) | |
# Check if the variable is a PIL Image | |
if isinstance(result, Image.Image): | |
result = rembg.remove(result) | |
# Check if the variable is a str filepath | |
elif isinstance(result, str): | |
result = Image.open(result) | |
result = rembg.remove(result) | |
elif isinstance(result, numpy.ndarray): | |
print('here ELIF 2') | |
# Convert the NumPy array to a PIL Image | |
result = Image.fromarray(result) | |
result = rembg.remove(result) | |
return result | |
abstract = '''Zero123++ is an image-conditioned diffusion model for generating 3D-consistent multi-view images from a single input view. To take full advantage of pretrained 2D generative priors, authors have developed various conditioning and training schemes to minimize the effort of finetuning from off-the-shelf image diffusion models such as Stable Diffusion. Zero123++ excels in producing high-quality, consistent multi-view images from a single image, overcoming common issues like texture degradation and geometric misalignment. Furthermore, authors showcase the feasibility of training a ControlNet on Zero123++ for enhanced control over the generation process. | |
''' | |
# Create a Gradio interface for the Zero123++ model | |
with gr.Blocks() as demo: | |
# Display a title | |
gr.HTML("<h1><center> Interactive WebUI : Zero123++ </center></h1>") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.HTML('''<img src='https://huggingface.co./spaces/ysharma/Zero123PlusDemo/resolve/main/teaser-low.jpg'>''') | |
with gr.Column(scale=5): | |
gr.HTML("<h2>A Single Image to Consistent Multi-view Diffusion Base Model</h2>") | |
gr.HTML('''<a href='https://arxiv.org/abs/2310.15110' target='_blank'>ArXiv</a> - <a href='https://github.com/SUDO-AI-3D/zero123plus/tree/main' target='_blank'>Code</a>''') | |
gr.HTML(f'<b>Abstract:</b> {abstract}') | |
with gr.Row(): | |
# Input section: Allow users to upload an image | |
with gr.Column(): | |
input_img = gr.Image(label='Input Image', type='filepath') | |
# Output section: Display the Zero123++ output image | |
with gr.Column(): | |
output_img = gr.Image(label='Zero123++ Output', interactive=False) | |
# Submit button to initiate the inference | |
btn = gr.Button('Submit') | |
# Advanced options section with accordion for hiding/showing | |
with gr.Accordion("Advanced options:", open=False): | |
rm_in_bkg = gr.Checkbox(label='Remove Input Background', info='Select this checkbox to run an extra background removal pass like rembg to remove background in Input image ') | |
rm_out_bkg = gr.Checkbox(label='Remove Output Background', info='Select this checkbox to run an extra background removal pass like rembg to remove the gray background for Output image') | |
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=15, maximum=100, step=1, value=75, interactive=True) | |
guidance_scale = gr.Slider(label="Classifier Free Guidance Scale", minimum=1.00, maximum=10.00, step=0.1, value=4.0, interactive=True) | |
seed = gr.Number(0, label='Seed', info='A random seed value will be used if seed is set to 0') | |
btn.click(inference, [input_img, num_inference_steps, guidance_scale, seed ], output_img) | |
rm_in_bkg.input(remove_background, input_img, input_img) | |
rm_out_bkg.input(remove_background, output_img, output_img) | |
gr.Examples( | |
examples=[['extinguisher.png', 75, 4.0, 0], | |
['mushroom.png', 75, 4.0, 0], | |
['tianw2.png', 75, 4.0, 0], | |
['lysol.png', 75, 4.0, 0], | |
['ghost-eating-burger.png', 75, 4.0, 0] | |
], | |
inputs=[input_img, num_inference_steps, guidance_scale, seed], | |
outputs=output_img, | |
fn=inference, | |
cache_examples=True, | |
) | |
demo.launch(debug=False) | |