Spaces:
Runtime error
Runtime error
File size: 5,407 Bytes
00e7506 8bf5a04 6cddac6 8bf5a04 00e7506 4cd25c8 8bf5a04 4cd25c8 f5929dc 00e7506 4cd25c8 00e7506 4cd25c8 6cddac6 8bf5a04 95bbbe5 4cd25c8 7bc37e7 6cddac6 4cd25c8 7bc37e7 6cddac6 7bc37e7 94bbd7b 7bc37e7 6cddac6 298e25a 6cddac6 4cd25c8 6cddac6 94bbd7b 6cddac6 94bbd7b 6cddac6 4cd25c8 cf81290 4cd25c8 d321d87 4cd25c8 7bc37e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import torch
import requests
import rembg
import random
import gradio as gr
import numpy
from PIL import Image
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
# Load the pipeline
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16
)
# Feel free to tune the scheduler!
# `timestep_spacing` parameter is not supported in older versions of `diffusers`
# so there may be performance degradations
# We recommend using `diffusers==0.20.2`
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
pipeline.to('cuda:0')
def inference(input_img, num_inference_steps, guidance_scale, seed ):
# Download an example image.
cond = Image.open(input_img)
if seed==0:
seed = random.randint(1, 1000000)
# Run the pipeline!
#result = pipeline(cond, num_inference_steps=75).images[0]
result = pipeline(cond, num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(pipeline.device).manual_seed(int(seed))).images[0]
# for general real and synthetic images of general objects
# usually it is enough to have around 28 inference steps
# for images with delicate details like faces (real or anime)
# you may need 75-100 steps for the details to construct
#result.show()
#result.save("output.png")
return result
def remove_background(result):
print(type(result))
# Check if the variable is a PIL Image
if isinstance(result, Image.Image):
result = rembg.remove(result)
# Check if the variable is a str filepath
elif isinstance(result, str):
result = Image.open(result)
result = rembg.remove(result)
elif isinstance(result, numpy.ndarray):
print('here ELIF 2')
# Convert the NumPy array to a PIL Image
result = Image.fromarray(result)
result = rembg.remove(result)
return result
abstract = '''Zero123++ is an image-conditioned diffusion model for generating 3D-consistent multi-view images from a single input view. To take full advantage of pretrained 2D generative priors, authors have developed various conditioning and training schemes to minimize the effort of finetuning from off-the-shelf image diffusion models such as Stable Diffusion. Zero123++ excels in producing high-quality, consistent multi-view images from a single image, overcoming common issues like texture degradation and geometric misalignment. Furthermore, authors showcase the feasibility of training a ControlNet on Zero123++ for enhanced control over the generation process.
'''
# Create a Gradio interface for the Zero123++ model
with gr.Blocks() as demo:
# Display a title
gr.HTML("<h1><center> Interactive WebUI : Zero123++ </center></h1>")
with gr.Row():
with gr.Column(scale=1):
gr.HTML('''<img src='https://huggingface.co./spaces/ysharma/Zero123PlusDemo/resolve/main/teaser-low.jpg'>''')
with gr.Column(scale=5):
gr.HTML("<h2>A Single Image to Consistent Multi-view Diffusion Base Model</h2>")
gr.HTML('''<a href='https://arxiv.org/abs/2310.15110' target='_blank'>ArXiv</a> - <a href='https://github.com/SUDO-AI-3D/zero123plus/tree/main' target='_blank'>Code</a>''')
gr.HTML(f'<b>Abstract:</b> {abstract}')
with gr.Row():
# Input section: Allow users to upload an image
with gr.Column():
input_img = gr.Image(label='Input Image', type='filepath')
# Output section: Display the Zero123++ output image
with gr.Column():
output_img = gr.Image(label='Zero123++ Output', interactive=False)
# Submit button to initiate the inference
btn = gr.Button('Submit')
# Advanced options section with accordion for hiding/showing
with gr.Accordion("Advanced options:", open=False):
rm_in_bkg = gr.Checkbox(label='Remove Input Background', info='Select this checkbox to run an extra background removal pass like rembg to remove background in Input image ')
rm_out_bkg = gr.Checkbox(label='Remove Output Background', info='Select this checkbox to run an extra background removal pass like rembg to remove the gray background for Output image')
num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=15, maximum=100, step=1, value=75, interactive=True)
guidance_scale = gr.Slider(label="Classifier Free Guidance Scale", minimum=1.00, maximum=10.00, step=0.1, value=4.0, interactive=True)
seed = gr.Number(0, label='Seed', info='A random seed value will be used if seed is set to 0')
btn.click(inference, [input_img, num_inference_steps, guidance_scale, seed ], output_img)
rm_in_bkg.input(remove_background, input_img, input_img)
rm_out_bkg.input(remove_background, output_img, output_img)
gr.Examples(
examples=[['extinguisher.png', 75, 4.0, 0],
['mushroom.png', 75, 4.0, 0],
['tianw2.png', 75, 4.0, 0],
['lysol.png', 75, 4.0, 0],
['ghost-eating-burger.png', 75, 4.0, 0]
],
inputs=[input_img, num_inference_steps, guidance_scale, seed],
outputs=output_img,
fn=inference,
cache_examples=True,
)
demo.launch(debug=False)
|