File size: 5,407 Bytes
00e7506
 
8bf5a04
 
 
6cddac6
8bf5a04
00e7506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cd25c8
 
 
8bf5a04
 
 
4cd25c8
 
 
 
f5929dc
00e7506
4cd25c8
 
 
 
 
 
 
 
00e7506
4cd25c8
6cddac6
8bf5a04
 
 
 
 
 
 
95bbbe5
 
 
 
 
4cd25c8
 
 
7bc37e7
 
6cddac6
4cd25c8
7bc37e7
6cddac6
7bc37e7
 
 
 
94bbd7b
7bc37e7
 
6cddac6
 
 
 
 
 
 
298e25a
6cddac6
 
4cd25c8
 
6cddac6
 
94bbd7b
 
6cddac6
 
94bbd7b
6cddac6
 
4cd25c8
cf81290
4cd25c8
d321d87
 
 
 
 
 
 
 
 
 
 
 
 
 
4cd25c8
 
7bc37e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import requests
import rembg
import random
import gradio as gr
import numpy

from PIL import Image
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler

# Load the pipeline
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
    torch_dtype=torch.float16
)

# Feel free to tune the scheduler!
# `timestep_spacing` parameter is not supported in older versions of `diffusers`
# so there may be performance degradations
# We recommend using `diffusers==0.20.2`
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing='trailing'
)
pipeline.to('cuda:0')


def inference(input_img, num_inference_steps, guidance_scale, seed ):
    # Download an example image.
    cond = Image.open(input_img)
    if seed==0:
        seed = random.randint(1, 1000000)
        
    # Run the pipeline!
    #result = pipeline(cond, num_inference_steps=75).images[0]
    result = pipeline(cond, num_inference_steps=num_inference_steps, 
                  guidance_scale=guidance_scale, 
                  generator=torch.Generator(pipeline.device).manual_seed(int(seed))).images[0]

    # for general real and synthetic images of general objects
    # usually it is enough to have around 28 inference steps
    # for images with delicate details like faces (real or anime)
    # you may need 75-100 steps for the details to construct
    
    #result.show()
    #result.save("output.png")
    return result

def remove_background(result):
    print(type(result))
    # Check if the variable is a PIL Image
    if isinstance(result, Image.Image):
        result = rembg.remove(result)
    # Check if the variable is a str filepath
    elif isinstance(result, str):
        result = Image.open(result)
        result = rembg.remove(result)
    elif isinstance(result, numpy.ndarray):
      print('here ELIF 2')
      # Convert the NumPy array to a PIL Image
      result = Image.fromarray(result)
      result = rembg.remove(result)
    return result


abstract = '''Zero123++ is an image-conditioned diffusion model for generating 3D-consistent multi-view images from a single input view. To take full advantage of pretrained 2D generative priors, authors have developed various conditioning and training schemes to minimize the effort of finetuning from off-the-shelf image diffusion models such as Stable Diffusion. Zero123++ excels in producing high-quality, consistent multi-view images from a single image, overcoming common issues like texture degradation and geometric misalignment. Furthermore, authors showcase the feasibility of training a ControlNet on Zero123++ for enhanced control over the generation process. 
'''
# Create a Gradio interface for the Zero123++ model
with gr.Blocks() as demo:
# Display a title
    gr.HTML("<h1><center> Interactive WebUI : Zero123++ </center></h1>")
    with gr.Row():
      with gr.Column(scale=1):
        gr.HTML('''<img src='https://huggingface.co./spaces/ysharma/Zero123PlusDemo/resolve/main/teaser-low.jpg'>''')
      with gr.Column(scale=5):
        gr.HTML("<h2>A Single Image to Consistent Multi-view Diffusion Base Model</h2>")
        gr.HTML('''<a href='https://arxiv.org/abs/2310.15110' target='_blank'>ArXiv</a> - <a href='https://github.com/SUDO-AI-3D/zero123plus/tree/main' target='_blank'>Code</a>''')
        gr.HTML(f'<b>Abstract:</b> {abstract}')
    with gr.Row():
      # Input section: Allow users to upload an image
      with gr.Column():
          input_img = gr.Image(label='Input Image', type='filepath')
      
      # Output section: Display the Zero123++ output image
      with gr.Column():
          output_img = gr.Image(label='Zero123++ Output', interactive=False)
    
    # Submit button to initiate the inference
    btn = gr.Button('Submit')

    # Advanced options section with accordion for hiding/showing
    with gr.Accordion("Advanced options:", open=False):
        rm_in_bkg = gr.Checkbox(label='Remove Input Background', info='Select this checkbox to run an extra background removal pass like rembg to remove background in Input image ')
        rm_out_bkg = gr.Checkbox(label='Remove Output Background', info='Select this checkbox to run an extra background removal pass like rembg to remove the gray background for Output image')
        num_inference_steps = gr.Slider(label="Number of Inference Steps", minimum=15, maximum=100, step=1, value=75, interactive=True)
        guidance_scale = gr.Slider(label="Classifier Free Guidance Scale", minimum=1.00, maximum=10.00, step=0.1, value=4.0, interactive=True)
        seed = gr.Number(0, label='Seed', info='A random seed value will be used if seed is set to 0')
    

    btn.click(inference, [input_img, num_inference_steps, guidance_scale, seed ], output_img)
    rm_in_bkg.input(remove_background, input_img, input_img)
    rm_out_bkg.input(remove_background, output_img, output_img)

    gr.Examples(
    examples=[['extinguisher.png', 75, 4.0, 0],
              ['mushroom.png', 75, 4.0, 0], 
              ['tianw2.png', 75, 4.0, 0], 
              ['lysol.png', 75, 4.0, 0], 
              ['ghost-eating-burger.png', 75, 4.0, 0]
             ],
    inputs=[input_img, num_inference_steps, guidance_scale, seed],
    outputs=output_img,
    fn=inference,
    cache_examples=True,
      )



demo.launch(debug=False)