Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import spaces | |
from transformers import AutoModelForCausalLM, GemmaTokenizer, TextIteratorStreamer | |
from threading import Thread | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">CodeGemma</h1> | |
<p>This Space demonstrates model <a href="https://huggingface.co./google/codegemma-7b-it">CodeGemma-7b-it</a> by Google. CodeGemma is a collection of lightweight open code models built on top of Gemma. Feel free to play with it, or duplicate to run privately!</p> | |
<p>π For more details about the CodeGemma release and how to use the models with <code>transformers</code>, take a look <a href="https://huggingface.co./blog/codegemma">at our blog post</a>.</p> | |
</div> | |
''' | |
PLACEHOLDER = """ | |
<div style="opacity: 0.65;"> | |
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/7dd7659cff2eab51f0f5336f378edfca01dd16fa/gemma_lockup_vertical_full-color_rgb.png" style="width:30%;"> | |
<br><b>CodeGemma-7B-IT Chatbot</b> | |
</div> | |
""" | |
# Load the tokenizer and model | |
tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b-it") | |
model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b-it", device_map="auto") | |
def codegemma(message: str, | |
history: list, | |
temperature: float, | |
max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the CodeGemma model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
conversation = [] | |
for user, assistant in history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids= input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Gradio block | |
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,height=500) | |
with gr.Blocks(fill_height=True) as demo: | |
gr.HTML(DESCRIPTION) | |
gr.ChatInterface( | |
fn=codegemma, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.95, | |
label="Temperature", | |
render=False), | |
gr.Slider(minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False ), | |
], | |
examples=[ | |
["Write a Python function to calculate the nth fibonacci number."] | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |