CodeGemma / app.py
ysharma's picture
ysharma HF staff
fixed history handling
c57a974 verified
raw
history blame
3.68 kB
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, GemmaTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">CodeGemma</h1>
<p>This Space demonstrates model <a href="https://huggingface.co./google/codegemma-7b-it">CodeGemma-7b-it</a> by Google. CodeGemma is a collection of lightweight open code models built on top of Gemma. Feel free to play with it, or duplicate to run privately!</p>
<p>πŸ”Ž For more details about the CodeGemma release and how to use the models with <code>transformers</code>, take a look <a href="https://huggingface.co./blog/codegemma">at our blog post</a>.</p>
</div>
'''
PLACEHOLDER = """
<div style="opacity: 0.65;">
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/7dd7659cff2eab51f0f5336f378edfca01dd16fa/gemma_lockup_vertical_full-color_rgb.png" style="width:30%;">
<br><b>CodeGemma-7B-IT Chatbot</b>
</div>
"""
# Load the tokenizer and model
tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b-it")
model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b-it", device_map="auto")
@spaces.GPU(duration=120)
def codegemma(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the CodeGemma model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,height=500)
with gr.Blocks(fill_height=True) as demo:
gr.HTML(DESCRIPTION)
gr.ChatInterface(
fn=codegemma,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
["Write a Python function to calculate the nth fibonacci number."]
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()