Spaces:
Runtime error
Runtime error
File size: 3,684 Bytes
5138ffd e653440 9bdc545 5138ffd 16c4fb3 9bdc545 e653440 5138ffd 389e675 e653440 9bdc545 389e675 9bdc545 e653440 9bdc545 e653440 c57a974 9bdc545 e653440 9bdc545 e653440 9bdc545 fd28db2 9bdc545 fd28db2 e653440 9bdc545 5138ffd 9bdc545 16c4fb3 9bdc545 b02ce42 5138ffd 9bdc545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, GemmaTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">CodeGemma</h1>
<p>This Space demonstrates model <a href="https://huggingface.co./google/codegemma-7b-it">CodeGemma-7b-it</a> by Google. CodeGemma is a collection of lightweight open code models built on top of Gemma. Feel free to play with it, or duplicate to run privately!</p>
<p>🔎 For more details about the CodeGemma release and how to use the models with <code>transformers</code>, take a look <a href="https://huggingface.co./blog/codegemma">at our blog post</a>.</p>
</div>
'''
PLACEHOLDER = """
<div style="opacity: 0.65;">
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/7dd7659cff2eab51f0f5336f378edfca01dd16fa/gemma_lockup_vertical_full-color_rgb.png" style="width:30%;">
<br><b>CodeGemma-7B-IT Chatbot</b>
</div>
"""
# Load the tokenizer and model
tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b-it")
model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b-it", device_map="auto")
@spaces.GPU(duration=120)
def codegemma(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the CodeGemma model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,height=500)
with gr.Blocks(fill_height=True) as demo:
gr.HTML(DESCRIPTION)
gr.ChatInterface(
fn=codegemma,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
["Write a Python function to calculate the nth fibonacci number."]
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |