Spaces:
Runtime error
Runtime error
File size: 17,107 Bytes
b9a91e0 d44194a b9a91e0 fc3d2ab 873c73d b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 b3cb545 d44194a b9a91e0 873c73d b9a91e0 d44194a b9a91e0 d44194a b9a91e0 b3cb545 d44194a b9a91e0 d44194a b9a91e0 b3cb545 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 d44194a b9a91e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import openai
import gradio as gr
import time
import requests
import shutil
import json
from PIL import Image
from gradio_client import Client
from newsapi import NewsApiClient
# Import langchain things that are needed generically
from langchain import LLMMathChain, SerpAPIWrapper
from langchain.agents import AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.tools import format_tool_to_openai_function
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
# import all defined functions, their definitions and a dictionary
from gpt_function_definitions import generate_image, generate_caption, get_news
# Get the value of the openai_api_key from environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")
#chat = ChatOpenAI(
# #openai_api_key=openai_api_key,
# temperature=1.0,
# streaming=True,
# model='gpt-3.5-turbo-0613'
# )
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
# TOOLS and FUNCTION CALLING
# Load the tool configs that are needed.
# 'Tool' dataclass wraps functions that accept a single string input and returns a string output.
tools = [
Tool.from_function(
func=generate_image,
name="generate_image",
description="generate an image based on the prompt provided"
# coroutine= ... <- you can specify an async method if desired as well
),
#Tool.from_function(
# func=generate_music,
# name="generate_music",
# description="generate music based on an input text and input melody"
# # coroutine= ... <- you can specify an async method if desired as well
#),
Tool.from_function(
func=generate_caption,
name="generate_caption",
description="generate caption for the image present at the filepath provided"
# coroutine= ... <- you can specify an async method if desired as well
),
Tool.from_function(
func=get_news,
name="get_news",
description="get top three engilsh news items for a given query, sorted by relevancy"
# coroutine= ... <- you can specify an async method if desired as well
),]
# Creating OpenAI functions
# use LangChain tools as OpenAI functions.
#functions = [format_tool_to_openai_function(t) for t in tools]
#functions
# defining agents using tools and openai functions
#agent = initialize_agent(tools, chat, agent=AgentType.OPENAI_FUNCTIONS, verbose=True)
# function calling
def run_conversation(user_input, plugins, tools, chat):
print(f"Plugins are - {plugins}")
print(f"Total available PLUGINS/Tools are - {tools}")
# Load the tool configs that are needed.
# 'Tool' dataclass wraps functions that accept a single string input and returns a string output.
tools = [val for val, flag in zip(tools, plugins) if flag]
print(f"PLUGINS/Tools enabled in this run are - {tools}")
try:
# defining agents using tools and openai functions
agent = initialize_agent(tools, chat, agent=AgentType.OPENAI_FUNCTIONS, verbose=True)
# calling the agent
function_response = agent.run(user_input)
print(f"function_response is - {function_response}")
image_file_extns = ['png', 'jpg', 'gif', 'tiff', 'tif', 'svg', 'bmp']
literal_terms = ['caption', 'captions']
if any(extn in function_response for extn in image_file_extns) and not any(term in function_response for term in literal_terms) :
image_file = function_response.replace('sandbox:',"").split('(')[-1].split(')')[0]
print(f"image_file is -{image_file}")
return function_response, image_file
return function_response, None
except Exception as e:
print(f"An error occured while calling agents using 'Function Calling': {e}")
return None, None
system = SystemMessage(content = "You are a helpful AI assistant")
def predict(user_input, temperature, stable_diff, image_cap, top_news, google_search, file_output, chatbot):
print(f"chatbot - {chatbot}")
print(f"user_input - {user_input}")
# file handling
print(f"Logging: files in the file directory is -{file_output}")
if file_output is not None:
files_avail = [f.name for f in file_output ]
print(f"files_available are -{files_avail} ")
else:
print("No files available at the moment!")
chat = ChatOpenAI(
#openai_api_key=openai_api_key,
temperature=temperature, #1.0
streaming=True,
model='gpt-3.5-turbo-0613')
messages = [system]
# image, caption, news, serach
plugins = [stable_diff, image_cap, top_news, google_search]
function_call_decision = True if any(plugins) else False
if len(chatbot) != 0:
for conv in chatbot:
human = HumanMessage(content=conv[0])
ai = AIMessage(content=conv[1])
messages.append(human)
messages.append(ai)
messages.append(HumanMessage(content=user_input))
print(f"messages list is - {messages}")
if function_call_decision:
# getting openAI function agent reponse
function_response, image_file = run_conversation(user_input, plugins, tools, chat)
if function_response is not None:
gpt_response = AIMessage(content= function_response)
bot_message = gpt_response.content
print(f"bot_message - {bot_message}")
chatbot.append((user_input, bot_message))
return "", chatbot, image_file
else: # for first user message
messages.append(HumanMessage(content=user_input))
print(f"messages list is - {messages}")
if function_call_decision:
# getting openAI function agent reponse
function_response, image_file = run_conversation(user_input, plugins, tools, chat)
if function_response is not None:
gpt_response = AIMessage(content= function_response)
bot_message = gpt_response.content
print(f"bot_message - {bot_message}")
chatbot.append((user_input, bot_message))
return "", chatbot, image_file
# getting gpt3.5's response
gpt_response = chat(messages)
print(f"gpt_response - {gpt_response}")
bot_message = gpt_response.content
print(f"bot_message - {bot_message}")
chatbot.append((user_input, bot_message))
return "", chatbot, None #"", chatbot
def add_image(file_to_save, file_output):
print(f"image file_to_save is - {file_to_save}")
print(f"files available in directory are -{file_output}")
if file_output is not None:
file_output = [f.name for f in file_output]
if file_to_save is None:
return file_output
file_output = [file_to_save] if file_output is None else file_output + [file_to_save]
print(f"Logging: Updated file directory - {file_output}")
return file_output #gr.update(value="dog1.jpg")
def add_audio(file_to_save, file_output):
print(f"audio file_to_save is - {file_to_save}")
print(f"files available in directory are -{file_output}")
if file_output is not None:
file_output = [f.name for f in file_output]
if file_to_save is None:
return file_output
file_output = [file_to_save] if file_output is None else file_output + [file_to_save]
print(f"Logging: Updated file directory - {file_output}")
return file_output #gr.update(value="dog1.jpg")
def upload_file(file, file_output):
print(f"Logging: all files available - {file_output}")
print(f"Logging: file uploaded is - {file}")
img_orig_name = file.name.split('/')[-1]
shutil.copy2(file.name, img_orig_name)
file_output = [file] if file_output is None else file_output + [file]
file_output = [f.name for f in file_output]
print(f"Logging: Updated file list is - {file_output}")
return file_output
messaging = """
How does a Language Model like GPT makes discerning choices regarding which plugins to run? Well, this is done using the Language Model as a reasoning agent and allowing it to assess and process information intelligently.<br>
<b>Langchain & OpenAI Function Calling</b>: AI models like gpt-3.5-turbo-0613 and gpt-4-0613, are designed to identify when and how to activate functions through API calls. These function-specific APIs generate a JSON object with necessary arguments, aiming to surpass the efficacy of traditional chat or text completion APIs.<br>
<b>Gradio Chatbots</b>: Gradio provides super easy way to build Chatbot UI. Refer our <a href="https://gradio.app/docs/#chatbot" target="_blank">Docs</a>. Using Langchain's OpenAI Functions Agent you can create chatbots designed to respond to queries by communicating with external APIs. The API responses are fed back to the Language Model for processing and a new response is generated for the user.The versatility of using Gradio to build LLM applications is immense. FOr example, in this Gradio app, you can have an array of Plugins based on functions which are tailored for various purposes (image, video, audio, text generation, utilities etc). This enhancing the breadth and depth of interactions with your Language Model.
"""
add_plugin_steps = """## Steps to add new Plugins to your Gradio ChatGPT Chatbot
1. **Acquire the API Endpoint**
- You need an API which you can query, and for this example let's consider using a text-to-speech demo hosted on Huggingface Spaces.
- **API Endpoint**: [https://gradio-neon-tts-plugin-coqui.hf.space/](https://gradio-neon-tts-plugin-coqui.hf.space/)
2. **Create a Function to Query the API**
- You can access any Gradio demo as an API via the Gradio Python Client.
```python
from gradio.client import Client
def texttospeech(input_text):
client = Client("https://gradio-neon-tts-plugin-coqui.hf.space/")
result = client.predict(
input_text, # str in 'Input' Textbox component
"en", # str in 'Language' Radio component
api_name="/predict"
)
return result
```
3. **Describe the Function to GPT-3.5**
- You need to describe your function to GPT3.5/4. This function definition will get passed to gpt and will suck up your token. GPT may or may not use this function based on user inputs later on.
- You can either use the Gradio demo for converting any given function to the required JSON format for GPT-3.5.
- Demo: [Function to JSON](https://huggingface.co./spaces/ysharma/function-to-JSON)
- Or, you can create the dictionary object on your own. Note that, the correct format is super important here.
- MAke sure to name your JSON object description as `<function_name>_func`.
```python
texttospeech_func = {
"name": "texttospeech",
"description": "generate speech from the given input text",
"parameters": {
"type": "object",
"properties": {
"input_text": {
"type": "string",
"description": "text that will be used to generate speech"
}
},
"required": [
"input_text"
]
}
}
```
4. **Add Function and JSON Object Details**
- Add the function definition and description to the `gpt_function_definitions.py` file (simply copy and paste).
- `dict_plugin_functions` is a dictionary of all available plugins. Add your plugin information to this dictionary in the required format.
```python
'texttospeech_func': {
'dict': texttospeech_func,
'func': texttospeech
}
```
5. **Update the Chatbot Layout**
- Go to the Blocks Chatbot layout and add a new checkbox for your plugin as:
```python
texttospeech = gr.Checkbox(label="📝🗣️Text-To-Speech", value=False)
```
- Add the new checkbox component to your submit and click events for your chatbot and to the predict function accordingly.
- And also to the `plugins` list in `predict`
```python
plugins = [music_gen, stable_diff, image_cap, top_news, texttospeech]
```
Thats it! you are have added your own brand new CHATGPT Plugin for yourself. Go PLAY!!
"""
# GRADIO BLOCK
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""") as demo: # #width: 1000px;
gr.HTML('<h1 align="center">🚀ChatGPT🧩Plugin WebUI using Langchain & Gradio</h1>')
with gr.Accordion("What is happening?", open=False):
gr.HTML(messaging)
gr.HTML('''<center><a href="https://huggingface.co./spaces/ysharma/ChatGPT-Plugins-UI-with-Langchain?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
with gr.Row():
with gr.Column():
openai_api_key_tb = gr.Textbox(label="Enter your OpenAI API key here",
value="🎁ChatGPT Keys are provided by HuggingFace for Free🥳 You don't need to enter yours!😉🙌",
container=False)
#plugin_message = gr.HTML()
with gr.Accordion("Plugins🛠️ Available",open=True):
with gr.Row():
#music_gen = gr.Checkbox(label="🎵MusicGen", value=False)
stable_diff = gr.Checkbox(label="🖼️Diffusers", value=False)
image_cap = gr.Checkbox(label="🎨Describe Image", value=False)
top_news = gr.Checkbox(label="📰News", value=False)
google_search = gr.Checkbox(label="🌐Google Search", value=False)
#texttospeech = gr.Checkbox(label="📝🗣️Text-To-Speech", value=False)
#gr.CheckboxGroup(["🎵MusicGen", "🖼️Diffusers", "🎨Describe Image", "📰News", "📝🗣️Text-To-Speech" ], label="Plug-ins", info="enhance your ChatGPT experience using Plugins : Powered by Gradio!")
with gr.Column():
gen_image = gr.Image(label="generated image", type="filepath", interactive=False)
with gr.Row():
chatbot = gr.Chatbot(elem_id='chatbot')
with gr.Row():
with gr.Column(scale=0.70):
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
with gr.Column(scale=0.15, min_width=0):
b1 = gr.Button("🏃Run")
with gr.Column(scale=0.15, min_width=0):
btn = gr.UploadButton("📁Upload", file_types=["image", "audio"], file_count="single")
with gr.Row():
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
with gr.Accordion("Available Files", open=False):
file_output = gr.File(file_count="multiple", file_types=["image", "audio"], label="Files Available")
inputs.submit( predict,
[inputs, temperature, stable_diff, image_cap, top_news, google_search, file_output, chatbot],
[inputs, chatbot, gen_image ])
b1.click( predict,
[inputs, temperature, stable_diff, image_cap, top_news, google_search, file_output, chatbot],
[inputs, chatbot, gen_image ])
btn.upload(upload_file, [btn, file_output], file_output)
gen_image.change(add_image, [gen_image, file_output], file_output)
#gen_audio.change(add_audio, [gen_audio, file_output], file_output)
gr.HTML("""<a href="https://huggingface.co./spaces/ysharma/ChatGPT-Plugins-in-Gradio/blob/main/README.md" target="_blank">How to add new ChatGPT Plugins in Gradio Chatbot in 5 mins!! or open the accordion below.</a>""")
with gr.Accordion("How to add more Plugins to ChatGPT", open=False ):
gr.Markdown(add_plugin_steps)
gr.Examples(
examples = [["generate an image of a puppy", 1.0, True, False, False, False, None],
["generate a caption for the image cat2.jpg", 1.0, False, True, False, False, "cat2.jpg"],
["What is the latest top news on Inflation in Europe", 1.0, False, False, True, False, None],
["What is Europe's stand on the ongoing generative AI revolution?", 1.0, False, False, False, True, None],
["Write a very short poem on 'sparkling water'", 1.0, False, False, False, False, None],
["What is the weather in LA and SF?", 1.0, False, False, False, True, None],
["Who is the owner of Twitter? Are there any competitors of Twitter yet?", 1.0, True, True, True, True, None],
],
inputs = [inputs, temperature, stable_diff, image_cap, top_news, google_search, file_output, chatbot]
)
demo.queue().launch(debug=True, height = '1000') |