ysharma HF staff commited on
Commit
b9a91e0
·
1 Parent(s): 1536e66

create app.py

Browse files
Files changed (1) hide show
  1. app.py +342 -0
app.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import openai
3
+ import gradio as gr
4
+ import time
5
+ import requests
6
+ import shutil
7
+ import json
8
+
9
+ from PIL import Image
10
+ from gradio_client import Client
11
+ from newsapi import NewsApiClient
12
+
13
+ # Import langchain things that are needed generically
14
+ from langchain import LLMMathChain, SerpAPIWrapper
15
+ from langchain.agents import AgentType, initialize_agent
16
+ from langchain.chat_models import ChatOpenAI
17
+ from langchain.tools import BaseTool, StructuredTool, Tool, tool
18
+
19
+ from langchain.tools import format_tool_to_openai_function
20
+ from langchain.schema import (
21
+ AIMessage,
22
+ HumanMessage,
23
+ SystemMessage
24
+ )
25
+
26
+ chat = ChatOpenAI(
27
+ openai_api_key=openai_api_key,
28
+ temperature=1.0,
29
+ streaming=True,
30
+ model='gpt-3.5-turbo-0613'
31
+ )
32
+
33
+ # import all defined functions, their definitions and a dictionary
34
+ from gpt_function_definitions import generate_image, generate_caption, get_news
35
+
36
+
37
+ #Streaming endpoint
38
+ API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
39
+
40
+ # Get the value of the openai_api_key from environment variable
41
+ #openai_api_key = os.getenv("OPENAI_API_KEY")
42
+ openai.api_key = os.getenv("OPENAI_API_KEY")
43
+
44
+
45
+ # TOOLS , FUNCTION CALLING, AND AGENTS
46
+ # Load the tool configs that are needed.
47
+ # 'Tool' dataclass wraps functions that accept a single string input and returns a string output.
48
+ tools = [
49
+ Tool.from_function(
50
+ func=generate_image,
51
+ name="generate_image",
52
+ description="generate an image based on the prompt provided"
53
+ # coroutine= ... <- you can specify an async method if desired as well
54
+ ),
55
+ #Tool.from_function(
56
+ # func=generate_music,
57
+ # name="generate_music",
58
+ # description="generate music based on an input text and input melody"
59
+ # # coroutine= ... <- you can specify an async method if desired as well
60
+ #),
61
+ Tool.from_function(
62
+ func=generate_caption,
63
+ name="generate_caption",
64
+ description="generate caption for the image present at the filepath provided"
65
+ # coroutine= ... <- you can specify an async method if desired as well
66
+ ),
67
+ Tool.from_function(
68
+ func=get_news,
69
+ name="get_news",
70
+ description="get top three engilsh news items for a given query, sorted by relevancy"
71
+ # coroutine= ... <- you can specify an async method if desired as well
72
+ ),]
73
+
74
+ # Creating OpenAI functions
75
+ # use LangChain tools as OpenAI functions.
76
+ functions = [format_tool_to_openai_function(t) for t in tools]
77
+ functions
78
+
79
+ # defining agents using tools and openai functions
80
+ agent = initialize_agent(tools, chat, agent=AgentType.OPENAI_FUNCTIONS, verbose=True)
81
+
82
+
83
+ # function calling
84
+ def run_conversation(user_input):
85
+ # calling the agent
86
+ function_response = agent.run(user_input)
87
+ print(f"function_response is - {function_response}")
88
+
89
+ image_file_extns = ['png', 'jpg', 'gif', 'tiff', 'tif', 'svg', 'bmp']
90
+ literal_terms = ['caption', 'captions']
91
+ if any(extn in function_response for extn in image_file_extns) and not any(term in function_response for term in literal_terms) :
92
+ image_file = function_response.replace('sandbox:',"").split('(')[-1].split(')')[0]
93
+ print(f"image_file is -{image_file}")
94
+ return function_response, image_file
95
+
96
+ return function_response, None
97
+
98
+
99
+ system = SystemMessage(content = "You are a helpful AI assistant") # that translates English to Pirate English.")
100
+
101
+ def predict(user_input, temperature, stable_diff, image_cap, top_news, file_output, chatbot):
102
+
103
+ print(f"chatbot - {chatbot}")
104
+ print(f"user_input - {user_input}")
105
+
106
+ # file handling
107
+ print(f"Logging: files in the file directory is -{file_output}")
108
+ if file_output is not None:
109
+ files_avail = [f.name for f in file_output ]
110
+ print(f"files_available are -{files_avail} ")
111
+ else:
112
+ print("No files available at the moment!")
113
+
114
+
115
+ chat = ChatOpenAI(
116
+ openai_api_key=openai_api_key,
117
+ temperature=temperature, #1.0
118
+ streaming=True,
119
+ model='gpt-3.5-turbo-0613')
120
+ messages = [system]
121
+ plugins = [stable_diff, image_cap, top_news, ] #music_gen
122
+ function_call_decision = True if any(plugins) else False #"auto" if any(plugins) else "none"
123
+
124
+ if len(chatbot) != 0:
125
+ for conv in chatbot:
126
+ human = HumanMessage(content=conv[0])
127
+ ai = AIMessage(content=conv[1])
128
+ messages.append(human)
129
+ messages.append(ai)
130
+ messages.append(HumanMessage(content=user_input))
131
+ if function_call_decision:
132
+ # getting openAI function agent reponse
133
+ function_response, image_file = run_conversation(user_input)
134
+ gpt_response = AIMessage(content= function_response)
135
+ bot_message = gpt_response.content
136
+ print(f"bot_message - {bot_message}")
137
+ chatbot.append((user_input, bot_message))
138
+ return "", chatbot, image_file
139
+ else: # for first user message
140
+ #human = HumanMessage(content=user_input)
141
+ #messages.append(human)
142
+ messages.append(HumanMessage(content=user_input))
143
+ if function_call_decision:
144
+ # getting openAI function agent reponse
145
+ function_response, image_file = run_conversation(user_input)
146
+ gpt_response = AIMessage(content= function_response)
147
+ bot_message = gpt_response.content
148
+ print(f"bot_message - {bot_message}")
149
+ chatbot.append((user_input, bot_message))
150
+ return "", chatbot, image_file
151
+
152
+ print(f"messages - {messages}")
153
+
154
+ # getting gpt3.5's response
155
+ gpt_response = chat(messages)
156
+ print(f"gpt_response - {gpt_response}")
157
+ bot_message = gpt_response.content
158
+ print(f"bot_message - {bot_message}")
159
+
160
+ chatbot.append((user_input, bot_message))
161
+
162
+ return "", chatbot, None
163
+
164
+
165
+
166
+ def add_image(file_to_save, file_output):
167
+ print(f"image file_to_save is - {file_to_save}")
168
+ print(f"files available in directory are -{file_output}")
169
+
170
+ if file_output is not None:
171
+ file_output = [f.name for f in file_output]
172
+ if file_to_save is None:
173
+ return file_output
174
+ file_output = [file_to_save] if file_output is None else file_output + [file_to_save]
175
+ print(f"Logging: Updated file directory - {file_output}")
176
+ return file_output #gr.update(value="dog1.jpg")
177
+
178
+ def add_audio(file_to_save, file_output):
179
+ print(f"audio file_to_save is - {file_to_save}")
180
+ print(f"files available in directory are -{file_output}")
181
+
182
+ if file_output is not None:
183
+ file_output = [f.name for f in file_output]
184
+ if file_to_save is None:
185
+ return file_output
186
+ file_output = [file_to_save] if file_output is None else file_output + [file_to_save]
187
+ print(f"Logging: Updated file directory - {file_output}")
188
+ return file_output #gr.update(value="dog1.jpg")
189
+
190
+ def upload_file(file, file_output):
191
+ print(f"Logging: all files available - {file_output}")
192
+ print(f"Logging: file uploaded is - {file}")
193
+
194
+ img_orig_name = file.name.split('/')[-1]
195
+ shutil.copy2(file.name, img_orig_name)
196
+
197
+ file_output = [file] if file_output is None else file_output + [file]
198
+ file_output = [f.name for f in file_output]
199
+ print(f"Logging: Updated file list is - {file_output}")
200
+ return file_output
201
+
202
+
203
+ messaging = """
204
+ How does a Language Model like GPT makes discerning choices regarding which plugins to run? Well, this is done using the Language Model as a reasoning agent and allowing it to assess and process information intelligently.<br>
205
+ <b>Langchain & OpenAI Function Calling</b>: AI models like gpt-3.5-turbo-0613 and gpt-4-0613, are designed to identify when and how to activate functions through API calls. These function-specific APIs generate a JSON object with necessary arguments, aiming to surpass the efficacy of traditional chat or text completion APIs.<br>
206
+ <b>Gradio Chatbots</b>: Gradio provides super easy way to build Chatbot UI. Refer our <a href="https://gradio.app/docs/#chatbot" target="_blank">Docs</a>. Using Langchain's OpenAI Functions Agent you can create chatbots designed to respond to queries by communicating with external APIs. The API responses are fed back to the Language Model for processing and a new response is generated for the user.The versatility of using Gradio to build LLM applications is immense. FOr example, in this Gradio app, you can have an array of Plugins based on functions which are tailored for various purposes (image, video, audio, text generation, utilities etc). This enhancing the breadth and depth of interactions with your Language Model.
207
+ """
208
+
209
+ add_plugin_steps = """## Steps to add new Plugins to your Gradio ChatGPT Chatbot
210
+
211
+ 1. **Acquire the API Endpoint**
212
+ - You need an API which you can query, and for this example let's consider using a text-to-speech demo hosted on Huggingface Spaces.
213
+ - **API Endpoint**: [https://gradio-neon-tts-plugin-coqui.hf.space/](https://gradio-neon-tts-plugin-coqui.hf.space/)
214
+
215
+ 2. **Create a Function to Query the API**
216
+ - You can access any Gradio demo as an API via the Gradio Python Client.
217
+ ```python
218
+ from gradio.client import Client
219
+
220
+ def texttospeech(input_text):
221
+ client = Client("https://gradio-neon-tts-plugin-coqui.hf.space/")
222
+ result = client.predict(
223
+ input_text, # str in 'Input' Textbox component
224
+ "en", # str in 'Language' Radio component
225
+ api_name="/predict"
226
+ )
227
+ return result
228
+ ```
229
+
230
+ 3. **Describe the Function to GPT-3.5**
231
+ - You need to describe your function to GPT3.5/4. This function definition will get passed to gpt and will suck up your token. GPT may or may not use this function based on user inputs later on.
232
+ - You can either use the Gradio demo for converting any given function to the required JSON format for GPT-3.5.
233
+ - Demo: [Function to JSON](https://huggingface.co/spaces/ysharma/function-to-JSON)
234
+ - Or, you can create the dictionary object on your own. Note that, the correct format is super important here.
235
+ - MAke sure to name your JSON object description as `<function_name>_func`.
236
+ ```python
237
+ texttospeech_func = {
238
+ "name": "texttospeech",
239
+ "description": "generate speech from the given input text",
240
+ "parameters": {
241
+ "type": "object",
242
+ "properties": {
243
+ "input_text": {
244
+ "type": "string",
245
+ "description": "text that will be used to generate speech"
246
+ }
247
+ },
248
+ "required": [
249
+ "input_text"
250
+ ]
251
+ }
252
+ }
253
+ ```
254
+
255
+ 4. **Add Function and JSON Object Details**
256
+ - Add the function definition and description to the `gpt_function_definitions.py` file (simply copy and paste).
257
+ - `dict_plugin_functions` is a dictionary of all available plugins. Add your plugin information to this dictionary in the required format.
258
+ ```python
259
+ 'texttospeech_func': {
260
+ 'dict': texttospeech_func,
261
+ 'func': texttospeech
262
+ }
263
+ ```
264
+
265
+ 5. **Update the Chatbot Layout**
266
+ - Go to the Blocks Chatbot layout and add a new checkbox for your plugin as:
267
+ ```python
268
+ texttospeech = gr.Checkbox(label="📝🗣️Text-To-Speech", value=False)
269
+ ```
270
+ - Add the new checkbox component to your submit and click events for your chatbot and to the predict function accordingly.
271
+ - And also to the `plugins` list in `predict`
272
+ ```python
273
+ plugins = [music_gen, stable_diff, image_cap, top_news, texttospeech]
274
+ ```
275
+
276
+ Thats it! you are have added your own brand new CHATGPT Plugin for yourself. Go PLAY!!
277
+ """
278
+
279
+
280
+
281
+ # GRADIO BLOCK
282
+ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
283
+ #chatbot {height: 520px; overflow: auto;}""") as demo: # #width: 1000px;
284
+ gr.HTML('<h1 align="center">Build 🚀ChatGPT🧩Plugin-UI using Langchain & Gradio</h1>')
285
+ with gr.Accordion("What is happening?", open=False):
286
+ gr.HTML(messaging)
287
+ gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT-Plugins-UI-with-Langchain?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
288
+ with gr.Row():
289
+ with gr.Column():
290
+ openai_api_key_tb = gr.Textbox(label="Enter your OpenAI API key here",
291
+ value="🎁Keys are provided by HuggingFace for Free🥳 Don't need to enter yours!😉🙌",
292
+ container=False)
293
+ #plugin_message = gr.HTML()
294
+ with gr.Accordion("Plug-ins🛠️",open=True):
295
+ with gr.Row():
296
+ #music_gen = gr.Checkbox(label="🎵MusicGen", value=False)
297
+ stable_diff = gr.Checkbox(label="🖼️Diffusers", value=False)
298
+ image_cap = gr.Checkbox(label="🎨Describe Image", value=False)
299
+ top_news = gr.Checkbox(label="📰News", value=False)
300
+ #texttospeech = gr.Checkbox(label="📝🗣️Text-To-Speech", value=False)
301
+ #gr.CheckboxGroup(["🎵MusicGen", "🖼️Diffusers", "🎨Describe Image", "📰News", "📝🗣️Text-To-Speech" ], label="Plug-ins", info="enhance your ChatGPT experience using Plugins : Powered by Gradio!")
302
+ with gr.Column():
303
+ gen_image = gr.Image(label="generated image", type="filepath")
304
+
305
+ with gr.Row():
306
+ chatbot = gr.Chatbot(elem_id='chatbot')
307
+
308
+ with gr.Row():
309
+ with gr.Column(scale=0.85):
310
+ inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
311
+ with gr.Column(scale=0.15, min_width=0):
312
+ btn = gr.UploadButton("📁Upload", file_types=["image", "audio"], file_count="single")
313
+
314
+ b1 = gr.Button("🏃Run")
315
+
316
+ with gr.Row():
317
+ with gr.Accordion("Parameters", open=False):
318
+ top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
319
+ temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
320
+ with gr.Accordion("Available Files", open=False):
321
+ file_output = gr.File(file_count="multiple", file_types=["image", "audio"])
322
+
323
+ inputs.submit( predict,
324
+ [inputs, temperature, stable_diff, image_cap, top_news, file_output, chatbot],
325
+ [inputs, chatbot, gen_image ])
326
+ b1.click( predict,
327
+ [inputs, temperature, stable_diff, image_cap, top_news, file_output, chatbot],
328
+ [inputs, chatbot, gen_image ])
329
+
330
+
331
+ btn.upload(upload_file, [btn, file_output], file_output)
332
+ gen_image.change(add_image, [gen_image, file_output], file_output)
333
+ #gen_audio.change(add_audio, [gen_audio, file_output], file_output)
334
+ gr.HTML("""<a href="https://huggingface.co/spaces/ysharma/ChatGPT-Plugins-in-Gradio/blob/main/README.md" target="_blank">How to add new ChatGPT Plugins in Gradio Chatbot in 5 mins!! or open the accordion below.</a>""")
335
+ with gr.Accordion("How to add more Plugins to ChatGPT", open=False ):
336
+ gr.Markdown(add_plugin_steps)
337
+
338
+ #gr.Examples(
339
+ # inputs, top_p, temperature, openai_api_key, chat_counter, music_gen, stable_diff, image_cap, top_news, texttospeech, file_output, plugin_message, chatbot, state
340
+ #)
341
+
342
+ demo.queue().launch(debug=True, height = '1000')