Spaces:
Runtime error
Runtime error
import os | |
import sys | |
sys.path.append('.') | |
import cv2 | |
import math | |
import torch | |
import argparse | |
import numpy as np | |
from torch.nn import functional as F | |
from model.pytorch_msssim import ssim_matlab | |
from model.RIFE import Model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = Model() | |
model.load_model('train_log') | |
model.eval() | |
model.device() | |
path = 'UCF101/ucf101_interp_ours/' | |
dirs = os.listdir(path) | |
psnr_list = [] | |
ssim_list = [] | |
print(len(dirs)) | |
for d in dirs: | |
img0 = (path + d + '/frame_00.png') | |
img1 = (path + d + '/frame_02.png') | |
gt = (path + d + '/frame_01_gt.png') | |
img0 = (torch.tensor(cv2.imread(img0).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0) | |
img1 = (torch.tensor(cv2.imread(img1).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0) | |
gt = (torch.tensor(cv2.imread(gt).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0) | |
pred = model.inference(img0, img1)[0] | |
ssim = ssim_matlab(gt, torch.round(pred * 255).unsqueeze(0) / 255.).detach().cpu().numpy() | |
out = pred.detach().cpu().numpy().transpose(1, 2, 0) | |
out = np.round(out * 255) / 255. | |
gt = gt[0].cpu().numpy().transpose(1, 2, 0) | |
psnr = -10 * math.log10(((gt - out) * (gt - out)).mean()) | |
psnr_list.append(psnr) | |
ssim_list.append(ssim) | |
print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list))) | |