Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- ECCV2022-RIFE-main/.gitignore +14 -0
- ECCV2022-RIFE-main/Colab_demo.ipynb +125 -0
- ECCV2022-RIFE-main/LICENSE +21 -0
- ECCV2022-RIFE-main/README.md +195 -0
- ECCV2022-RIFE-main/benchmark/ATD12K.py +42 -0
- ECCV2022-RIFE-main/benchmark/HD.py +89 -0
- ECCV2022-RIFE-main/benchmark/HD_multi_4X.py +105 -0
- ECCV2022-RIFE-main/benchmark/MiddleBury_Other.py +37 -0
- ECCV2022-RIFE-main/benchmark/UCF101.py +39 -0
- ECCV2022-RIFE-main/benchmark/Vimeo90K.py +40 -0
- ECCV2022-RIFE-main/benchmark/testtime.py +29 -0
- ECCV2022-RIFE-main/benchmark/yuv_frame_io.py +124 -0
- ECCV2022-RIFE-main/dataset.py +109 -0
- ECCV2022-RIFE-main/demo/D0_slomo_clipped.gif +0 -0
- ECCV2022-RIFE-main/demo/D2_slomo_clipped.gif +0 -0
- ECCV2022-RIFE-main/demo/I0_0.png +0 -0
- ECCV2022-RIFE-main/demo/I0_1.png +0 -0
- ECCV2022-RIFE-main/demo/I0_slomo_clipped.gif +3 -0
- ECCV2022-RIFE-main/demo/I1_0.png +0 -0
- ECCV2022-RIFE-main/demo/I1_1.png +0 -0
- ECCV2022-RIFE-main/demo/I2_0.png +0 -0
- ECCV2022-RIFE-main/demo/I2_1.png +0 -0
- ECCV2022-RIFE-main/demo/I2_slomo_clipped.gif +0 -0
- ECCV2022-RIFE-main/demo/intro.png +0 -0
- ECCV2022-RIFE-main/docker/Dockerfile +23 -0
- ECCV2022-RIFE-main/docker/inference_img +2 -0
- ECCV2022-RIFE-main/docker/inference_video +2 -0
- ECCV2022-RIFE-main/inference_img.py +111 -0
- ECCV2022-RIFE-main/inference_video.py +294 -0
- ECCV2022-RIFE-main/model/IFNet.py +108 -0
- ECCV2022-RIFE-main/model/IFNet_2R.py +108 -0
- ECCV2022-RIFE-main/model/IFNet_m.py +112 -0
- ECCV2022-RIFE-main/model/RIFE.py +95 -0
- ECCV2022-RIFE-main/model/laplacian.py +59 -0
- ECCV2022-RIFE-main/model/loss.py +128 -0
- ECCV2022-RIFE-main/model/oldmodel/IFNet_HD.py +122 -0
- ECCV2022-RIFE-main/model/oldmodel/IFNet_HDv2.py +95 -0
- ECCV2022-RIFE-main/model/oldmodel/RIFE_HD.py +260 -0
- ECCV2022-RIFE-main/model/oldmodel/RIFE_HDv2.py +245 -0
- ECCV2022-RIFE-main/model/pytorch_msssim/__init__.py +200 -0
- ECCV2022-RIFE-main/model/refine.py +82 -0
- ECCV2022-RIFE-main/model/refine_2R.py +83 -0
- ECCV2022-RIFE-main/model/warplayer.py +22 -0
- ECCV2022-RIFE-main/requirements.txt +7 -0
- ECCV2022-RIFE-main/train.py +155 -0
.gitattributes
CHANGED
@@ -126,3 +126,4 @@ assets/assets/models/lsk-shell.glb filter=lfs diff=lfs merge=lfs -text
|
|
126 |
assets/assets/models/lsk.glb filter=lfs diff=lfs merge=lfs -text
|
127 |
assets/assets/models/outside.glb filter=lfs diff=lfs merge=lfs -text
|
128 |
assets/t2v/couple.gif filter=lfs diff=lfs merge=lfs -text
|
|
|
|
126 |
assets/assets/models/lsk.glb filter=lfs diff=lfs merge=lfs -text
|
127 |
assets/assets/models/outside.glb filter=lfs diff=lfs merge=lfs -text
|
128 |
assets/t2v/couple.gif filter=lfs diff=lfs merge=lfs -text
|
129 |
+
ECCV2022-RIFE-main/demo/I0_slomo_clipped.gif filter=lfs diff=lfs merge=lfs -text
|
ECCV2022-RIFE-main/.gitignore
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pyc
|
2 |
+
*.py~
|
3 |
+
*.py#
|
4 |
+
|
5 |
+
*.pkl
|
6 |
+
output/*
|
7 |
+
train_log/*
|
8 |
+
*.mp4
|
9 |
+
|
10 |
+
test/
|
11 |
+
.idea/
|
12 |
+
*.npz
|
13 |
+
|
14 |
+
*.zip
|
ECCV2022-RIFE-main/Colab_demo.ipynb
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"colab_type": "text",
|
7 |
+
"id": "view-in-github"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"<a href=\"https://colab.research.google.com/github/hzwer/arXiv2020-RIFE/blob/main/Colab_demo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"metadata": {
|
17 |
+
"id": "FypCcZkNNt2p"
|
18 |
+
},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"!git clone https://github.com/hzwer/arXiv2020-RIFE"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": null,
|
27 |
+
"metadata": {
|
28 |
+
"id": "1wysVHxoN54f"
|
29 |
+
},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"!mkdir /content/arXiv2020-RIFE/train_log\n",
|
33 |
+
"%cd /content/arXiv2020-RIFE/train_log\n",
|
34 |
+
"!gdown --id 1APIzVeI-4ZZCEuIRE1m6WYfSCaOsi_7_\n",
|
35 |
+
"!7z e RIFE_trained_model_v3.6.zip"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"metadata": {
|
42 |
+
"id": "AhbHfRBJRAUt"
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"%cd /content/arXiv2020-RIFE/\n",
|
47 |
+
"!gdown --id 1i3xlKb7ax7Y70khcTcuePi6E7crO_dFc\n",
|
48 |
+
"!pip install scikit-video"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"metadata": {
|
54 |
+
"id": "rirngW5uRMdg"
|
55 |
+
},
|
56 |
+
"source": [
|
57 |
+
"Please upload your video to content/arXiv2020-RIFE/video.mp4, or use our demo video."
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"metadata": {
|
64 |
+
"id": "dnLn4aHHPzN3"
|
65 |
+
},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"!nvidia-smi\n",
|
69 |
+
"!python3 inference_video.py --exp=2 --video=demo.mp4 --montage"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"metadata": {
|
75 |
+
"id": "77KK6lxHgJhf"
|
76 |
+
},
|
77 |
+
"source": [
|
78 |
+
"Our demo.mp4 is 25FPS. You can adjust the parameters for your own perference.\n",
|
79 |
+
"For example: \n",
|
80 |
+
"--fps=60 --exp=1 --video=mydemo.avi --png"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": null,
|
86 |
+
"metadata": {
|
87 |
+
"cellView": "code",
|
88 |
+
"id": "0zIBbVE3UfUD"
|
89 |
+
},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"from IPython.display import display, Image\n",
|
93 |
+
"import moviepy.editor as mpy\n",
|
94 |
+
"display(mpy.ipython_display('demo_4X_100fps.mp4', height=256, max_duration=100.))"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": null,
|
100 |
+
"metadata": {
|
101 |
+
"id": "tWkJCNgP3zXA"
|
102 |
+
},
|
103 |
+
"outputs": [],
|
104 |
+
"source": [
|
105 |
+
"!python3 inference_img.py --img demo/I0_0.png demo/I0_1.png\n",
|
106 |
+
"ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -vf \"split[s0][s1];[s0]palettegen=stats_mode=single[p];[s1][p]paletteuse=new=1\" output/slomo.gif\n",
|
107 |
+
"# Image interpolation"
|
108 |
+
]
|
109 |
+
}
|
110 |
+
],
|
111 |
+
"metadata": {
|
112 |
+
"accelerator": "GPU",
|
113 |
+
"colab": {
|
114 |
+
"include_colab_link": true,
|
115 |
+
"name": "Untitled0.ipynb",
|
116 |
+
"provenance": []
|
117 |
+
},
|
118 |
+
"kernelspec": {
|
119 |
+
"display_name": "Python 3",
|
120 |
+
"name": "python3"
|
121 |
+
}
|
122 |
+
},
|
123 |
+
"nbformat": 4,
|
124 |
+
"nbformat_minor": 0
|
125 |
+
}
|
ECCV2022-RIFE-main/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) Megvii Inc.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
ECCV2022-RIFE-main/README.md
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Real-Time Intermediate Flow Estimation for Video Frame Interpolation
|
2 |
+
## Introduction
|
3 |
+
This project is the implement of [Real-Time Intermediate Flow Estimation for Video Frame Interpolation](https://arxiv.org/abs/2011.06294). Currently, our model can run 30+FPS for 2X 720p interpolation on a 2080Ti GPU. It supports arbitrary-timestep interpolation between a pair of images.
|
4 |
+
|
5 |
+
**2023.11 - We recently release new [v4.7-4.10](https://github.com/hzwer/Practical-RIFE/tree/main#model-list) optimized for anime scenes!** 🎉 We draw from [SAFA](https://github.com/megvii-research/WACV2024-SAFA/tree/main)’s research.
|
6 |
+
|
7 |
+
2022.7.4 - Our paper is accepted by ECCV2022. Thanks to all relevant authors, contributors and users!
|
8 |
+
|
9 |
+
From 2020 to 2022, we submitted RIFE for five submissions(rejected by CVPR21 ICCV21 AAAI22 CVPR22). Thanks to all anonymous reviewers, your suggestions have helped to significantly improve the paper! -> [author website](https://github.com/hzwer)
|
10 |
+
|
11 |
+
[ECCV Poster](https://drive.google.com/file/d/1xCXuLUCSwhN61kvIF8jxDvQiUGtLK0kN/view?usp=sharing) | [ECCV 5-min presentation](https://youtu.be/qdp-NYqWQpA) | [论文中文介绍](https://zhuanlan.zhihu.com/p/568553080) | [rebuttal (2WA1WR->3WA)](https://drive.google.com/file/d/16IVjwRpwbTuJbYyTn4PizKX8I257QxY-/view?usp=sharing)
|
12 |
+
|
13 |
+
## [YouTube](https://www.youtube.com/results?search_query=rife+interpolation&sp=CAM%253D) | [BiliBili](https://search.bilibili.com/all?keyword=SVFI&order=stow&duration=0&tids_1=0) | [Colab](https://colab.research.google.com/github/hzwer/ECCV2022-RIFE/blob/main/Colab_demo.ipynb) | [Tutorial](https://www.youtube.com/watch?v=gf_on-dbwyU&feature=emb_title) | [V2EX](https://www.v2ex.com/t/984548)
|
14 |
+
|
15 |
+
**Pinned Software: [RIFE-App](https://grisk.itch.io/rife-app) | [FlowFrames](https://nmkd.itch.io/flowframes) | [SVFI (中文)](https://github.com/YiWeiHuang-stack/Squirrel-Video-Frame-Interpolation)**
|
16 |
+
|
17 |
+
16X interpolation results from two input images:
|
18 |
+
|
19 |
+
![Demo](./demo/I2_slomo_clipped.gif)
|
20 |
+
![Demo](./demo/D2_slomo_clipped.gif)
|
21 |
+
|
22 |
+
## Software
|
23 |
+
[Flowframes](https://nmkd.itch.io/flowframes) | [SVFI(中文)](https://github.com/YiWeiHuang-stack/Squirrel-Video-Frame-Interpolation) | [Waifu2x-Extension-GUI](https://github.com/AaronFeng753/Waifu2x-Extension-GUI) | [Autodesk Flame](https://vimeo.com/505942142) | [SVP](https://www.svp-team.com/wiki/RIFE_AI_interpolation) | [MPV_lazy](https://github.com/hooke007/MPV_lazy) | [enhancr](https://github.com/mafiosnik777/enhancr)
|
24 |
+
|
25 |
+
[RIFE-App(Paid)](https://grisk.itch.io/rife-app) | [Steam-VFI(Paid)](https://store.steampowered.com/app/1692080/SVFI/)
|
26 |
+
|
27 |
+
We are not responsible for and participating in the development of above software. According to the open source license, we respect the commercial behavior of other developers.
|
28 |
+
|
29 |
+
[VapourSynth-RIFE](https://github.com/HolyWu/vs-rife) | [RIFE-ncnn-vulkan](https://github.com/nihui/rife-ncnn-vulkan) | [VapourSynth-RIFE-ncnn-Vulkan](https://github.com/HomeOfVapourSynthEvolution/VapourSynth-RIFE-ncnn-Vulkan)
|
30 |
+
|
31 |
+
<img src="https://api.star-history.com/svg?repos=megvii-research/ECCV2022-RIFE,Justin62628/Squirrel-RIFE,n00mkrad/flowframes,nihui/rife-ncnn-vulkan,hzwer/Practical-RIFE&type=Date" height="320" width="480" />
|
32 |
+
|
33 |
+
If you are a developer, welcome to follow [Practical-RIFE](https://github.com/hzwer/Practical-RIFE), which aims to make RIFE more practical for users by adding various features and design new models with faster speed.
|
34 |
+
|
35 |
+
You may check [this pull request](https://github.com/megvii-research/ECCV2022-RIFE/pull/300) for supporting macOS.
|
36 |
+
## CLI Usage
|
37 |
+
|
38 |
+
### Installation
|
39 |
+
|
40 |
+
```
|
41 |
+
git clone [email protected]:megvii-research/ECCV2022-RIFE.git
|
42 |
+
cd ECCV2022-RIFE
|
43 |
+
pip3 install -r requirements.txt
|
44 |
+
```
|
45 |
+
|
46 |
+
* Download the pretrained **HD** models from [here](https://drive.google.com/file/d/1APIzVeI-4ZZCEuIRE1m6WYfSCaOsi_7_/view?usp=sharing). (百度网盘链接:https://pan.baidu.com/share/init?surl=u6Q7-i4Hu4Vx9_5BJibPPA 密码:hfk3,把压缩包解开后放在 train_log/\*)
|
47 |
+
|
48 |
+
* Unzip and move the pretrained parameters to train_log/\*
|
49 |
+
|
50 |
+
* This model is not reported by our paper, for our paper model please refer to [evaluation](https://github.com/hzwer/ECCV2022-RIFE#evaluation).
|
51 |
+
|
52 |
+
### Run
|
53 |
+
|
54 |
+
**Video Frame Interpolation**
|
55 |
+
|
56 |
+
You can use our [demo video](https://drive.google.com/file/d/1i3xlKb7ax7Y70khcTcuePi6E7crO_dFc/view?usp=sharing) or your own video.
|
57 |
+
```
|
58 |
+
python3 inference_video.py --exp=1 --video=video.mp4
|
59 |
+
```
|
60 |
+
(generate video_2X_xxfps.mp4)
|
61 |
+
```
|
62 |
+
python3 inference_video.py --exp=2 --video=video.mp4
|
63 |
+
```
|
64 |
+
(for 4X interpolation)
|
65 |
+
```
|
66 |
+
python3 inference_video.py --exp=1 --video=video.mp4 --scale=0.5
|
67 |
+
```
|
68 |
+
(If your video has very high resolution such as 4K, we recommend set --scale=0.5 (default 1.0). If you generate disordered pattern on your videos, try set --scale=2.0. This parameter control the process resolution for optical flow model.)
|
69 |
+
```
|
70 |
+
python3 inference_video.py --exp=2 --img=input/
|
71 |
+
```
|
72 |
+
(to read video from pngs, like input/0.png ... input/612.png, ensure that the png names are numbers)
|
73 |
+
```
|
74 |
+
python3 inference_video.py --exp=2 --video=video.mp4 --fps=60
|
75 |
+
```
|
76 |
+
(add slomo effect, the audio will be removed)
|
77 |
+
```
|
78 |
+
python3 inference_video.py --video=video.mp4 --montage --png
|
79 |
+
```
|
80 |
+
(if you want to montage the origin video and save the png format output)
|
81 |
+
|
82 |
+
**Optical Flow Estimation**
|
83 |
+
|
84 |
+
You may refer to [#278](https://github.com/megvii-research/ECCV2022-RIFE/issues/278#event-7199085190).
|
85 |
+
|
86 |
+
**Image Interpolation**
|
87 |
+
|
88 |
+
```
|
89 |
+
python3 inference_img.py --img img0.png img1.png --exp=4
|
90 |
+
```
|
91 |
+
(2^4=16X interpolation results)
|
92 |
+
After that, you can use pngs to generate mp4:
|
93 |
+
```
|
94 |
+
ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -c:v libx264 -pix_fmt yuv420p output/slomo.mp4 -q:v 0 -q:a 0
|
95 |
+
```
|
96 |
+
You can also use pngs to generate gif:
|
97 |
+
```
|
98 |
+
ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -vf "split[s0][s1];[s0]palettegen=stats_mode=single[p];[s1][p]paletteuse=new=1" output/slomo.gif
|
99 |
+
```
|
100 |
+
|
101 |
+
### Run in docker
|
102 |
+
Place the pre-trained models in `train_log/\*.pkl` (as above)
|
103 |
+
|
104 |
+
Building the container:
|
105 |
+
```
|
106 |
+
docker build -t rife -f docker/Dockerfile .
|
107 |
+
```
|
108 |
+
|
109 |
+
Running the container:
|
110 |
+
```
|
111 |
+
docker run --rm -it -v $PWD:/host rife:latest inference_video --exp=1 --video=untitled.mp4 --output=untitled_rife.mp4
|
112 |
+
```
|
113 |
+
```
|
114 |
+
docker run --rm -it -v $PWD:/host rife:latest inference_img --img img0.png img1.png --exp=4
|
115 |
+
```
|
116 |
+
|
117 |
+
Using gpu acceleration (requires proper gpu drivers for docker):
|
118 |
+
```
|
119 |
+
docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v $PWD:/host rife:latest inference_video --exp=1 --video=untitled.mp4 --output=untitled_rife.mp4
|
120 |
+
```
|
121 |
+
|
122 |
+
## Evaluation
|
123 |
+
Download [RIFE model](https://drive.google.com/file/d/1h42aGYPNJn2q8j_GVkS_yDu__G_UZ2GX/view?usp=sharing) or [RIFE_m model](https://drive.google.com/file/d/147XVsDXBfJPlyct2jfo9kpbL944mNeZr/view?usp=sharing) reported by our paper.
|
124 |
+
|
125 |
+
**UCF101**: Download [UCF101 dataset](https://liuziwei7.github.io/projects/VoxelFlow) at ./UCF101/ucf101_interp_ours/
|
126 |
+
|
127 |
+
**Vimeo90K**: Download [Vimeo90K dataset](http://toflow.csail.mit.edu/) at ./vimeo_interp_test
|
128 |
+
|
129 |
+
**MiddleBury**: Download [MiddleBury OTHER dataset](https://vision.middlebury.edu/flow/data/) at ./other-data and ./other-gt-interp
|
130 |
+
|
131 |
+
**HD**: Download [HD dataset](https://github.com/baowenbo/MEMC-Net) at ./HD_dataset. We also provide a [google drive download link](https://drive.google.com/file/d/1iHaLoR2g1-FLgr9MEv51NH_KQYMYz-FA/view?usp=sharing).
|
132 |
+
```
|
133 |
+
# RIFE
|
134 |
+
python3 benchmark/UCF101.py
|
135 |
+
# "PSNR: 35.282 SSIM: 0.9688"
|
136 |
+
python3 benchmark/Vimeo90K.py
|
137 |
+
# "PSNR: 35.615 SSIM: 0.9779"
|
138 |
+
python3 benchmark/MiddleBury_Other.py
|
139 |
+
# "IE: 1.956"
|
140 |
+
python3 benchmark/HD.py
|
141 |
+
# "PSNR: 32.14"
|
142 |
+
|
143 |
+
# RIFE_m
|
144 |
+
python3 benchmark/HD_multi_4X.py
|
145 |
+
# "PSNR: 22.96(544*1280), 31.87(720p), 34.25(1080p)"
|
146 |
+
```
|
147 |
+
|
148 |
+
## Training and Reproduction
|
149 |
+
Download [Vimeo90K dataset](http://toflow.csail.mit.edu/).
|
150 |
+
|
151 |
+
We use 16 CPUs, 4 GPUs and 20G memory for training:
|
152 |
+
```
|
153 |
+
python3 -m torch.distributed.launch --nproc_per_node=4 train.py --world_size=4
|
154 |
+
```
|
155 |
+
|
156 |
+
## Revision History
|
157 |
+
|
158 |
+
2021.3.18 [arXiv](https://arxiv.org/pdf/2011.06294v5.pdf): Modify the main experimental data, especially the runtime related issues.
|
159 |
+
|
160 |
+
2021.8.12 [arXiv](https://arxiv.org/pdf/2011.06294v6.pdf): Remove pre-trained model dependency and propose privileged distillation scheme for frame interpolation. Remove [census loss](https://github.com/hzwer/arXiv2021-RIFE/blob/0e241367847a0895748e64c6e1604c94db54d395/model/loss.py#L20) supervision.
|
161 |
+
|
162 |
+
2021.11.17 [arXiv](https://arxiv.org/pdf/2011.06294v11.pdf): Support arbitrary-time frame interpolation, aka RIFEm and add more experiments.
|
163 |
+
|
164 |
+
## Recommend
|
165 |
+
We sincerely recommend some related papers:
|
166 |
+
|
167 |
+
CVPR22 - [Optimizing Video Prediction via Video Frame Interpolation](https://openaccess.thecvf.com/content/CVPR2022/html/Wu_Optimizing_Video_Prediction_via_Video_Frame_Interpolation_CVPR_2022_paper.html)
|
168 |
+
|
169 |
+
CVPR22 - [Video Frame Interpolation with Transformer](https://openaccess.thecvf.com/content/CVPR2022/html/Lu_Video_Frame_Interpolation_With_Transformer_CVPR_2022_paper.html)
|
170 |
+
|
171 |
+
CVPR22 - [IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation](https://openaccess.thecvf.com/content/CVPR2022/html/Kong_IFRNet_Intermediate_Feature_Refine_Network_for_Efficient_Frame_Interpolation_CVPR_2022_paper.html)
|
172 |
+
|
173 |
+
CVPR23 - [A Dynamic Multi-Scale Voxel Flow Network for Video Prediction](https://huxiaotaostasy.github.io/DMVFN/)
|
174 |
+
|
175 |
+
CVPR23 - [Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation](https://arxiv.org/abs/2303.00440)
|
176 |
+
|
177 |
+
## Citation
|
178 |
+
If you think this project is helpful, please feel free to leave a star or cite our paper:
|
179 |
+
|
180 |
+
```
|
181 |
+
@inproceedings{huang2022rife,
|
182 |
+
title={Real-Time Intermediate Flow Estimation for Video Frame Interpolation},
|
183 |
+
author={Huang, Zhewei and Zhang, Tianyuan and Heng, Wen and Shi, Boxin and Zhou, Shuchang},
|
184 |
+
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
|
185 |
+
year={2022}
|
186 |
+
}
|
187 |
+
```
|
188 |
+
|
189 |
+
## Reference
|
190 |
+
|
191 |
+
Optical Flow:
|
192 |
+
[ARFlow](https://github.com/lliuz/ARFlow) [pytorch-liteflownet](https://github.com/sniklaus/pytorch-liteflownet) [RAFT](https://github.com/princeton-vl/RAFT) [pytorch-PWCNet](https://github.com/sniklaus/pytorch-pwc)
|
193 |
+
|
194 |
+
Video Interpolation:
|
195 |
+
[DVF](https://github.com/lxx1991/pytorch-voxel-flow) [TOflow](https://github.com/Coldog2333/pytoflow) [SepConv](https://github.com/sniklaus/sepconv-slomo) [DAIN](https://github.com/baowenbo/DAIN) [CAIN](https://github.com/myungsub/CAIN) [MEMC-Net](https://github.com/baowenbo/MEMC-Net) [SoftSplat](https://github.com/sniklaus/softmax-splatting) [BMBC](https://github.com/JunHeum/BMBC) [EDSC](https://github.com/Xianhang/EDSC-pytorch) [EQVI](https://github.com/lyh-18/EQVI)
|
ECCV2022-RIFE-main/benchmark/ATD12K.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append('.')
|
4 |
+
import cv2
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from model.pytorch_msssim import ssim_matlab
|
11 |
+
from model.RIFE import Model
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
model = Model()
|
15 |
+
model.load_model('train_log')
|
16 |
+
model.eval()
|
17 |
+
model.device()
|
18 |
+
|
19 |
+
path = 'datasets/test_2k_540p/'
|
20 |
+
dirs = os.listdir(path)
|
21 |
+
psnr_list = []
|
22 |
+
ssim_list = []
|
23 |
+
print(len(dirs))
|
24 |
+
for d in dirs:
|
25 |
+
img0 = (path + d + '/frame1.png')
|
26 |
+
img1 = (path + d + '/frame3.png')
|
27 |
+
gt = (path + d + '/frame2.png')
|
28 |
+
img0 = (torch.tensor(cv2.imread(img0).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
29 |
+
img1 = (torch.tensor(cv2.imread(img1).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
30 |
+
gt = (torch.tensor(cv2.imread(gt).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
31 |
+
pader = torch.nn.ReplicationPad2d([0, 0, 2, 2])
|
32 |
+
img0 = pader(img0)
|
33 |
+
img1 = pader(img1)
|
34 |
+
pred = model.inference(img0, img1)[0][:, 2:-2]
|
35 |
+
ssim = ssim_matlab(gt, torch.round(pred * 255).unsqueeze(0) / 255.).detach().cpu().numpy()
|
36 |
+
out = pred.detach().cpu().numpy().transpose(1, 2, 0)
|
37 |
+
out = np.round(out * 255) / 255.
|
38 |
+
gt = gt[0].cpu().numpy().transpose(1, 2, 0)
|
39 |
+
psnr = -10 * math.log10(((gt - out) * (gt - out)).mean())
|
40 |
+
psnr_list.append(psnr)
|
41 |
+
ssim_list.append(ssim)
|
42 |
+
print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list)))
|
ECCV2022-RIFE-main/benchmark/HD.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append('.')
|
4 |
+
import cv2
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from model.pytorch_msssim import ssim_matlab
|
11 |
+
from model.RIFE import Model
|
12 |
+
from skimage.color import rgb2yuv, yuv2rgb
|
13 |
+
from yuv_frame_io import YUV_Read,YUV_Write
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
model = Model()
|
17 |
+
model.load_model('train_log')
|
18 |
+
model.eval()
|
19 |
+
model.device()
|
20 |
+
|
21 |
+
name_list = [
|
22 |
+
('HD_dataset/HD720p_GT/parkrun_1280x720_50.yuv', 720, 1280),
|
23 |
+
('HD_dataset/HD720p_GT/shields_1280x720_60.yuv', 720, 1280),
|
24 |
+
('HD_dataset/HD720p_GT/stockholm_1280x720_60.yuv', 720, 1280),
|
25 |
+
('HD_dataset/HD1080p_GT/BlueSky.yuv', 1080, 1920),
|
26 |
+
('HD_dataset/HD1080p_GT/Kimono1_1920x1080_24.yuv', 1080, 1920),
|
27 |
+
('HD_dataset/HD1080p_GT/ParkScene_1920x1080_24.yuv', 1080, 1920),
|
28 |
+
('HD_dataset/HD1080p_GT/sunflower_1080p25.yuv', 1080, 1920),
|
29 |
+
('HD_dataset/HD544p_GT/Sintel_Alley2_1280x544.yuv', 544, 1280),
|
30 |
+
('HD_dataset/HD544p_GT/Sintel_Market5_1280x544.yuv', 544, 1280),
|
31 |
+
('HD_dataset/HD544p_GT/Sintel_Temple1_1280x544.yuv', 544, 1280),
|
32 |
+
('HD_dataset/HD544p_GT/Sintel_Temple2_1280x544.yuv', 544, 1280),
|
33 |
+
]
|
34 |
+
tot = 0.
|
35 |
+
for data in name_list:
|
36 |
+
psnr_list = []
|
37 |
+
name = data[0]
|
38 |
+
h = data[1]
|
39 |
+
w = data[2]
|
40 |
+
if 'yuv' in name:
|
41 |
+
Reader = YUV_Read(name, h, w, toRGB=True)
|
42 |
+
else:
|
43 |
+
Reader = cv2.VideoCapture(name)
|
44 |
+
_, lastframe = Reader.read()
|
45 |
+
# fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
46 |
+
# video = cv2.VideoWriter(name + '.mp4', fourcc, 30, (w, h))
|
47 |
+
for index in range(0, 100, 2):
|
48 |
+
if 'yuv' in name:
|
49 |
+
IMAGE1, success1 = Reader.read(index)
|
50 |
+
gt, _ = Reader.read(index + 1)
|
51 |
+
IMAGE2, success2 = Reader.read(index + 2)
|
52 |
+
if not success2:
|
53 |
+
break
|
54 |
+
else:
|
55 |
+
success1, gt = Reader.read()
|
56 |
+
success2, frame = Reader.read()
|
57 |
+
IMAGE1 = lastframe
|
58 |
+
IMAGE2 = frame
|
59 |
+
lastframe = frame
|
60 |
+
if not success2:
|
61 |
+
break
|
62 |
+
I0 = torch.from_numpy(np.transpose(IMAGE1, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
|
63 |
+
I1 = torch.from_numpy(np.transpose(IMAGE2, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
|
64 |
+
|
65 |
+
if h == 720:
|
66 |
+
pad = 24
|
67 |
+
elif h == 1080:
|
68 |
+
pad = 4
|
69 |
+
else:
|
70 |
+
pad = 16
|
71 |
+
pader = torch.nn.ReplicationPad2d([0, 0, pad, pad])
|
72 |
+
I0 = pader(I0)
|
73 |
+
I1 = pader(I1)
|
74 |
+
with torch.no_grad():
|
75 |
+
pred = model.inference(I0, I1)
|
76 |
+
pred = pred[:, :, pad: -pad]
|
77 |
+
out = (np.round(pred[0].detach().cpu().numpy().transpose(1, 2, 0) * 255)).astype('uint8')
|
78 |
+
# video.write(out)
|
79 |
+
if 'yuv' in name:
|
80 |
+
diff_rgb = 128.0 + rgb2yuv(gt / 255.)[:, :, 0] * 255 - rgb2yuv(out / 255.)[:, :, 0] * 255
|
81 |
+
mse = np.mean((diff_rgb - 128.0) ** 2)
|
82 |
+
PIXEL_MAX = 255.0
|
83 |
+
psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
|
84 |
+
else:
|
85 |
+
psnr = skim.compare_psnr(gt, out)
|
86 |
+
psnr_list.append(psnr)
|
87 |
+
print(np.mean(psnr_list))
|
88 |
+
tot += np.mean(psnr_list)
|
89 |
+
print('avg psnr', tot / len(name_list))
|
ECCV2022-RIFE-main/benchmark/HD_multi_4X.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append('.')
|
4 |
+
import cv2
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from model.pytorch_msssim import ssim_matlab
|
11 |
+
from model.RIFE import Model
|
12 |
+
from skimage.color import rgb2yuv, yuv2rgb
|
13 |
+
from yuv_frame_io import YUV_Read,YUV_Write
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
model = Model(arbitrary=True)
|
17 |
+
model.load_model('RIFE_m_train_log')
|
18 |
+
model.eval()
|
19 |
+
model.device()
|
20 |
+
|
21 |
+
name_list = [
|
22 |
+
('HD_dataset/HD720p_GT/parkrun_1280x720_50.yuv', 720, 1280),
|
23 |
+
('HD_dataset/HD720p_GT/shields_1280x720_60.yuv', 720, 1280),
|
24 |
+
('HD_dataset/HD720p_GT/stockholm_1280x720_60.yuv', 720, 1280),
|
25 |
+
('HD_dataset/HD1080p_GT/BlueSky.yuv', 1080, 1920),
|
26 |
+
('HD_dataset/HD1080p_GT/Kimono1_1920x1080_24.yuv', 1080, 1920),
|
27 |
+
('HD_dataset/HD1080p_GT/ParkScene_1920x1080_24.yuv', 1080, 1920),
|
28 |
+
('HD_dataset/HD1080p_GT/sunflower_1080p25.yuv', 1080, 1920),
|
29 |
+
('HD_dataset/HD544p_GT/Sintel_Alley2_1280x544.yuv', 544, 1280),
|
30 |
+
('HD_dataset/HD544p_GT/Sintel_Market5_1280x544.yuv', 544, 1280),
|
31 |
+
('HD_dataset/HD544p_GT/Sintel_Temple1_1280x544.yuv', 544, 1280),
|
32 |
+
('HD_dataset/HD544p_GT/Sintel_Temple2_1280x544.yuv', 544, 1280),
|
33 |
+
]
|
34 |
+
def inference(I0, I1, pad, multi=2, arbitrary=True):
|
35 |
+
img = [I0, I1]
|
36 |
+
if not arbitrary:
|
37 |
+
for i in range(multi):
|
38 |
+
res = [I0]
|
39 |
+
for j in range(len(img) - 1):
|
40 |
+
res.append(model.inference(img[j], img[j + 1]))
|
41 |
+
res.append(img[j + 1])
|
42 |
+
img = res
|
43 |
+
else:
|
44 |
+
img = [I0]
|
45 |
+
p = 2**multi
|
46 |
+
for i in range(p-1):
|
47 |
+
img.append(model.inference(I0, I1, timestep=(i+1)*(1./p)))
|
48 |
+
img.append(I1)
|
49 |
+
for i in range(len(img)):
|
50 |
+
img[i] = img[i][0][:, pad: -pad]
|
51 |
+
return img[1: -1]
|
52 |
+
|
53 |
+
tot = []
|
54 |
+
for data in name_list:
|
55 |
+
psnr_list = []
|
56 |
+
name = data[0]
|
57 |
+
h = data[1]
|
58 |
+
w = data[2]
|
59 |
+
if 'yuv' in name:
|
60 |
+
Reader = YUV_Read(name, h, w, toRGB=True)
|
61 |
+
else:
|
62 |
+
Reader = cv2.VideoCapture(name)
|
63 |
+
_, lastframe = Reader.read()
|
64 |
+
# fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
65 |
+
# video = cv2.VideoWriter(name + '.mp4', fourcc, 30, (w, h))
|
66 |
+
for index in range(0, 100, 4):
|
67 |
+
gt = []
|
68 |
+
if 'yuv' in name:
|
69 |
+
IMAGE1, success1 = Reader.read(index)
|
70 |
+
IMAGE2, success2 = Reader.read(index + 4)
|
71 |
+
if not success2:
|
72 |
+
break
|
73 |
+
for i in range(1, 4):
|
74 |
+
tmp, _ = Reader.read(index + i)
|
75 |
+
gt.append(tmp)
|
76 |
+
else:
|
77 |
+
print('Not Implement')
|
78 |
+
I0 = torch.from_numpy(np.transpose(IMAGE1, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
|
79 |
+
I1 = torch.from_numpy(np.transpose(IMAGE2, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
|
80 |
+
|
81 |
+
if h == 720:
|
82 |
+
pad = 24
|
83 |
+
elif h == 1080:
|
84 |
+
pad = 4
|
85 |
+
else:
|
86 |
+
pad = 16
|
87 |
+
pader = torch.nn.ReplicationPad2d([0, 0, pad, pad])
|
88 |
+
I0 = pader(I0)
|
89 |
+
I1 = pader(I1)
|
90 |
+
with torch.no_grad():
|
91 |
+
pred = inference(I0, I1, pad)
|
92 |
+
for i in range(4 - 1):
|
93 |
+
out = (np.round(pred[i].detach().cpu().numpy().transpose(1, 2, 0) * 255)).astype('uint8')
|
94 |
+
if 'yuv' in name:
|
95 |
+
diff_rgb = 128.0 + rgb2yuv(gt[i] / 255.)[:, :, 0] * 255 - rgb2yuv(out / 255.)[:, :, 0] * 255
|
96 |
+
mse = np.mean((diff_rgb - 128.0) ** 2)
|
97 |
+
PIXEL_MAX = 255.0
|
98 |
+
psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
|
99 |
+
else:
|
100 |
+
print('Not Implement')
|
101 |
+
psnr_list.append(psnr)
|
102 |
+
print(np.mean(psnr_list))
|
103 |
+
tot.append(np.mean(psnr_list))
|
104 |
+
|
105 |
+
print('PSNR: {}(544*1280), {}(720p), {}(1080p)'.format(np.mean(tot[7:11]), np.mean(tot[:3]), np.mean(tot[3:7])))
|
ECCV2022-RIFE-main/benchmark/MiddleBury_Other.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append('.')
|
4 |
+
import cv2
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from model.pytorch_msssim import ssim_matlab
|
11 |
+
from model.RIFE import Model
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
model = Model()
|
15 |
+
model.load_model('train_log')
|
16 |
+
model.eval()
|
17 |
+
model.device()
|
18 |
+
|
19 |
+
name = ['Beanbags', 'Dimetrodon', 'DogDance', 'Grove2', 'Grove3', 'Hydrangea', 'MiniCooper', 'RubberWhale', 'Urban2', 'Urban3', 'Venus', 'Walking']
|
20 |
+
IE_list = []
|
21 |
+
for i in name:
|
22 |
+
i0 = cv2.imread('other-data/{}/frame10.png'.format(i)).transpose(2, 0, 1) / 255.
|
23 |
+
i1 = cv2.imread('other-data/{}/frame11.png'.format(i)).transpose(2, 0, 1) / 255.
|
24 |
+
gt = cv2.imread('other-gt-interp/{}/frame10i11.png'.format(i))
|
25 |
+
h, w = i0.shape[1], i0.shape[2]
|
26 |
+
imgs = torch.zeros([1, 6, 480, 640]).to(device)
|
27 |
+
ph = (480 - h) // 2
|
28 |
+
pw = (640 - w) // 2
|
29 |
+
imgs[:, :3, :h, :w] = torch.from_numpy(i0).unsqueeze(0).float().to(device)
|
30 |
+
imgs[:, 3:, :h, :w] = torch.from_numpy(i1).unsqueeze(0).float().to(device)
|
31 |
+
I0 = imgs[:, :3]
|
32 |
+
I2 = imgs[:, 3:]
|
33 |
+
pred = model.inference(I0, I2)
|
34 |
+
out = pred[0].detach().cpu().numpy().transpose(1, 2, 0)
|
35 |
+
out = np.round(out[:h, :w] * 255)
|
36 |
+
IE_list.append(np.abs((out - gt * 1.0)).mean())
|
37 |
+
print(np.mean(IE_list))
|
ECCV2022-RIFE-main/benchmark/UCF101.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append('.')
|
4 |
+
import cv2
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from model.pytorch_msssim import ssim_matlab
|
11 |
+
from model.RIFE import Model
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
model = Model()
|
15 |
+
model.load_model('train_log')
|
16 |
+
model.eval()
|
17 |
+
model.device()
|
18 |
+
|
19 |
+
path = 'UCF101/ucf101_interp_ours/'
|
20 |
+
dirs = os.listdir(path)
|
21 |
+
psnr_list = []
|
22 |
+
ssim_list = []
|
23 |
+
print(len(dirs))
|
24 |
+
for d in dirs:
|
25 |
+
img0 = (path + d + '/frame_00.png')
|
26 |
+
img1 = (path + d + '/frame_02.png')
|
27 |
+
gt = (path + d + '/frame_01_gt.png')
|
28 |
+
img0 = (torch.tensor(cv2.imread(img0).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
29 |
+
img1 = (torch.tensor(cv2.imread(img1).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
30 |
+
gt = (torch.tensor(cv2.imread(gt).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
31 |
+
pred = model.inference(img0, img1)[0]
|
32 |
+
ssim = ssim_matlab(gt, torch.round(pred * 255).unsqueeze(0) / 255.).detach().cpu().numpy()
|
33 |
+
out = pred.detach().cpu().numpy().transpose(1, 2, 0)
|
34 |
+
out = np.round(out * 255) / 255.
|
35 |
+
gt = gt[0].cpu().numpy().transpose(1, 2, 0)
|
36 |
+
psnr = -10 * math.log10(((gt - out) * (gt - out)).mean())
|
37 |
+
psnr_list.append(psnr)
|
38 |
+
ssim_list.append(ssim)
|
39 |
+
print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list)))
|
ECCV2022-RIFE-main/benchmark/Vimeo90K.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append('.')
|
4 |
+
import cv2
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from model.pytorch_msssim import ssim_matlab
|
11 |
+
from model.RIFE import Model
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
model = Model()
|
15 |
+
model.load_model('train_log')
|
16 |
+
model.eval()
|
17 |
+
model.device()
|
18 |
+
|
19 |
+
path = 'vimeo_interp_test/'
|
20 |
+
f = open(path + 'tri_testlist.txt', 'r')
|
21 |
+
psnr_list = []
|
22 |
+
ssim_list = []
|
23 |
+
for i in f:
|
24 |
+
name = str(i).strip()
|
25 |
+
if(len(name) <= 1):
|
26 |
+
continue
|
27 |
+
print(path + 'target/' + name + '/im1.png')
|
28 |
+
I0 = cv2.imread(path + 'target/' + name + '/im1.png')
|
29 |
+
I1 = cv2.imread(path + 'target/' + name + '/im2.png')
|
30 |
+
I2 = cv2.imread(path + 'target/' + name + '/im3.png')
|
31 |
+
I0 = (torch.tensor(I0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
32 |
+
I2 = (torch.tensor(I2.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
33 |
+
mid = model.inference(I0, I2)[0]
|
34 |
+
ssim = ssim_matlab(torch.tensor(I1.transpose(2, 0, 1)).to(device).unsqueeze(0) / 255., torch.round(mid * 255).unsqueeze(0) / 255.).detach().cpu().numpy()
|
35 |
+
mid = np.round((mid * 255).detach().cpu().numpy()).astype('uint8').transpose(1, 2, 0) / 255.
|
36 |
+
I1 = I1 / 255.
|
37 |
+
psnr = -10 * math.log10(((I1 - mid) * (I1 - mid)).mean())
|
38 |
+
psnr_list.append(psnr)
|
39 |
+
ssim_list.append(ssim)
|
40 |
+
print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list)))
|
ECCV2022-RIFE-main/benchmark/testtime.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
sys.path.append('.')
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from model.RIFE import Model
|
8 |
+
|
9 |
+
model = Model()
|
10 |
+
model.eval()
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
torch.set_grad_enabled(False)
|
13 |
+
if torch.cuda.is_available():
|
14 |
+
torch.backends.cudnn.enabled = True
|
15 |
+
torch.backends.cudnn.benchmark = True
|
16 |
+
|
17 |
+
I0 = torch.rand(1, 3, 480, 640).to(device)
|
18 |
+
I1 = torch.rand(1, 3, 480, 640).to(device)
|
19 |
+
with torch.no_grad():
|
20 |
+
for i in range(100):
|
21 |
+
pred = model.inference(I0, I1)
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
torch.cuda.synchronize()
|
24 |
+
time_stamp = time.time()
|
25 |
+
for i in range(100):
|
26 |
+
pred = model.inference(I0, I1)
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
torch.cuda.synchronize()
|
29 |
+
print((time.time() - time_stamp) / 100)
|
ECCV2022-RIFE-main/benchmark/yuv_frame_io.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import getopt
|
3 |
+
import math
|
4 |
+
import numpy
|
5 |
+
import random
|
6 |
+
import logging
|
7 |
+
import numpy as np
|
8 |
+
from skimage.color import rgb2yuv, yuv2rgb
|
9 |
+
from PIL import Image
|
10 |
+
import os
|
11 |
+
from shutil import copyfile
|
12 |
+
|
13 |
+
class YUV_Read():
|
14 |
+
def __init__(self, filepath, h, w, format='yuv420', toRGB=True):
|
15 |
+
|
16 |
+
self.h = h
|
17 |
+
self.w = w
|
18 |
+
|
19 |
+
self.fp = open(filepath, 'rb')
|
20 |
+
|
21 |
+
if format == 'yuv420':
|
22 |
+
self.frame_length = int(1.5 * h * w)
|
23 |
+
self.Y_length = h * w
|
24 |
+
self.Uv_length = int(0.25 * h * w)
|
25 |
+
else:
|
26 |
+
pass
|
27 |
+
self.toRGB = toRGB
|
28 |
+
|
29 |
+
def read(self, offset_frame=None):
|
30 |
+
if not offset_frame == None:
|
31 |
+
self.fp.seek(offset_frame * self.frame_length, 0)
|
32 |
+
|
33 |
+
Y = np.fromfile(self.fp, np.uint8, count=self.Y_length)
|
34 |
+
U = np.fromfile(self.fp, np.uint8, count=self.Uv_length)
|
35 |
+
V = np.fromfile(self.fp, np.uint8, count=self.Uv_length)
|
36 |
+
if Y.size < self.Y_length or \
|
37 |
+
U.size < self.Uv_length or \
|
38 |
+
V.size < self.Uv_length:
|
39 |
+
return None, False
|
40 |
+
|
41 |
+
Y = np.reshape(Y, [self.w, self.h], order='F')
|
42 |
+
Y = np.transpose(Y)
|
43 |
+
|
44 |
+
U = np.reshape(U, [int(self.w / 2), int(self.h / 2)], order='F')
|
45 |
+
U = np.transpose(U)
|
46 |
+
|
47 |
+
V = np.reshape(V, [int(self.w / 2), int(self.h / 2)], order='F')
|
48 |
+
V = np.transpose(V)
|
49 |
+
|
50 |
+
U = np.array(Image.fromarray(U).resize([self.w, self.h]))
|
51 |
+
V = np.array(Image.fromarray(V).resize([self.w, self.h]))
|
52 |
+
|
53 |
+
if self.toRGB:
|
54 |
+
Y = Y / 255.0
|
55 |
+
U = U / 255.0 - 0.5
|
56 |
+
V = V / 255.0 - 0.5
|
57 |
+
|
58 |
+
self.YUV = np.stack((Y, U, V), axis=-1)
|
59 |
+
self.RGB = (255.0 * np.clip(yuv2rgb(self.YUV), 0.0, 1.0)).astype('uint8')
|
60 |
+
|
61 |
+
self.YUV = None
|
62 |
+
return self.RGB, True
|
63 |
+
else:
|
64 |
+
self.YUV = np.stack((Y, U, V), axis=-1)
|
65 |
+
return self.YUV, True
|
66 |
+
|
67 |
+
def close(self):
|
68 |
+
self.fp.close()
|
69 |
+
|
70 |
+
|
71 |
+
class YUV_Write():
|
72 |
+
def __init__(self, filepath, fromRGB=True):
|
73 |
+
if os.path.exists(filepath):
|
74 |
+
print(filepath)
|
75 |
+
|
76 |
+
self.fp = open(filepath, 'wb')
|
77 |
+
self.fromRGB = fromRGB
|
78 |
+
|
79 |
+
def write(self, Frame):
|
80 |
+
|
81 |
+
self.h = Frame.shape[0]
|
82 |
+
self.w = Frame.shape[1]
|
83 |
+
c = Frame.shape[2]
|
84 |
+
|
85 |
+
assert c == 3
|
86 |
+
if format == 'yuv420':
|
87 |
+
self.frame_length = int(1.5 * self.h * self.w)
|
88 |
+
self.Y_length = self.h * self.w
|
89 |
+
self.Uv_length = int(0.25 * self.h * self.w)
|
90 |
+
else:
|
91 |
+
pass
|
92 |
+
if self.fromRGB:
|
93 |
+
Frame = Frame / 255.0
|
94 |
+
YUV = rgb2yuv(Frame)
|
95 |
+
Y, U, V = np.dsplit(YUV, 3)
|
96 |
+
Y = Y[:, :, 0]
|
97 |
+
U = U[:, :, 0]
|
98 |
+
V = V[:, :, 0]
|
99 |
+
U = np.clip(U + 0.5, 0.0, 1.0)
|
100 |
+
V = np.clip(V + 0.5, 0.0, 1.0)
|
101 |
+
|
102 |
+
U = U[::2, ::2] # imresize(U,[int(self.h/2),int(self.w/2)],interp = 'nearest')
|
103 |
+
V = V[::2, ::2] # imresize(V ,[int(self.h/2),int(self.w/2)],interp = 'nearest')
|
104 |
+
Y = (255.0 * Y).astype('uint8')
|
105 |
+
U = (255.0 * U).astype('uint8')
|
106 |
+
V = (255.0 * V).astype('uint8')
|
107 |
+
else:
|
108 |
+
YUV = Frame
|
109 |
+
Y = YUV[:, :, 0]
|
110 |
+
U = YUV[::2, ::2, 1]
|
111 |
+
V = YUV[::2, ::2, 2]
|
112 |
+
|
113 |
+
Y = Y.flatten() # the first order is 0-dimension so don't need to transpose before flatten
|
114 |
+
U = U.flatten()
|
115 |
+
V = V.flatten()
|
116 |
+
|
117 |
+
Y.tofile(self.fp)
|
118 |
+
U.tofile(self.fp)
|
119 |
+
V.tofile(self.fp)
|
120 |
+
|
121 |
+
return True
|
122 |
+
|
123 |
+
def close(self):
|
124 |
+
self.fp.close()
|
ECCV2022-RIFE-main/dataset.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import ast
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
from torch.utils.data import DataLoader, Dataset
|
8 |
+
|
9 |
+
cv2.setNumThreads(1)
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
class VimeoDataset(Dataset):
|
12 |
+
def __init__(self, dataset_name, batch_size=32):
|
13 |
+
self.batch_size = batch_size
|
14 |
+
self.dataset_name = dataset_name
|
15 |
+
self.h = 256
|
16 |
+
self.w = 448
|
17 |
+
self.data_root = 'vimeo_triplet'
|
18 |
+
self.image_root = os.path.join(self.data_root, 'sequences')
|
19 |
+
train_fn = os.path.join(self.data_root, 'tri_trainlist.txt')
|
20 |
+
test_fn = os.path.join(self.data_root, 'tri_testlist.txt')
|
21 |
+
with open(train_fn, 'r') as f:
|
22 |
+
self.trainlist = f.read().splitlines()
|
23 |
+
with open(test_fn, 'r') as f:
|
24 |
+
self.testlist = f.read().splitlines()
|
25 |
+
self.load_data()
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return len(self.meta_data)
|
29 |
+
|
30 |
+
def load_data(self):
|
31 |
+
cnt = int(len(self.trainlist) * 0.95)
|
32 |
+
if self.dataset_name == 'train':
|
33 |
+
self.meta_data = self.trainlist[:cnt]
|
34 |
+
elif self.dataset_name == 'test':
|
35 |
+
self.meta_data = self.testlist
|
36 |
+
else:
|
37 |
+
self.meta_data = self.trainlist[cnt:]
|
38 |
+
|
39 |
+
def crop(self, img0, gt, img1, h, w):
|
40 |
+
ih, iw, _ = img0.shape
|
41 |
+
x = np.random.randint(0, ih - h + 1)
|
42 |
+
y = np.random.randint(0, iw - w + 1)
|
43 |
+
img0 = img0[x:x+h, y:y+w, :]
|
44 |
+
img1 = img1[x:x+h, y:y+w, :]
|
45 |
+
gt = gt[x:x+h, y:y+w, :]
|
46 |
+
return img0, gt, img1
|
47 |
+
|
48 |
+
def getimg(self, index):
|
49 |
+
imgpath = os.path.join(self.image_root, self.meta_data[index])
|
50 |
+
imgpaths = [imgpath + '/im1.png', imgpath + '/im2.png', imgpath + '/im3.png']
|
51 |
+
|
52 |
+
# Load images
|
53 |
+
img0 = cv2.imread(imgpaths[0])
|
54 |
+
gt = cv2.imread(imgpaths[1])
|
55 |
+
img1 = cv2.imread(imgpaths[2])
|
56 |
+
timestep = 0.5
|
57 |
+
return img0, gt, img1, timestep
|
58 |
+
|
59 |
+
# RIFEm with Vimeo-Septuplet
|
60 |
+
# imgpaths = [imgpath + '/im1.png', imgpath + '/im2.png', imgpath + '/im3.png', imgpath + '/im4.png', imgpath + '/im5.png', imgpath + '/im6.png', imgpath + '/im7.png']
|
61 |
+
# ind = [0, 1, 2, 3, 4, 5, 6]
|
62 |
+
# random.shuffle(ind)
|
63 |
+
# ind = ind[:3]
|
64 |
+
# ind.sort()
|
65 |
+
# img0 = cv2.imread(imgpaths[ind[0]])
|
66 |
+
# gt = cv2.imread(imgpaths[ind[1]])
|
67 |
+
# img1 = cv2.imread(imgpaths[ind[2]])
|
68 |
+
# timestep = (ind[1] - ind[0]) * 1.0 / (ind[2] - ind[0] + 1e-6)
|
69 |
+
|
70 |
+
def __getitem__(self, index):
|
71 |
+
img0, gt, img1, timestep = self.getimg(index)
|
72 |
+
if self.dataset_name == 'train':
|
73 |
+
img0, gt, img1 = self.crop(img0, gt, img1, 224, 224)
|
74 |
+
if random.uniform(0, 1) < 0.5:
|
75 |
+
img0 = img0[:, :, ::-1]
|
76 |
+
img1 = img1[:, :, ::-1]
|
77 |
+
gt = gt[:, :, ::-1]
|
78 |
+
if random.uniform(0, 1) < 0.5:
|
79 |
+
img0 = img0[::-1]
|
80 |
+
img1 = img1[::-1]
|
81 |
+
gt = gt[::-1]
|
82 |
+
if random.uniform(0, 1) < 0.5:
|
83 |
+
img0 = img0[:, ::-1]
|
84 |
+
img1 = img1[:, ::-1]
|
85 |
+
gt = gt[:, ::-1]
|
86 |
+
if random.uniform(0, 1) < 0.5:
|
87 |
+
tmp = img1
|
88 |
+
img1 = img0
|
89 |
+
img0 = tmp
|
90 |
+
timestep = 1 - timestep
|
91 |
+
# random rotation
|
92 |
+
p = random.uniform(0, 1)
|
93 |
+
if p < 0.25:
|
94 |
+
img0 = cv2.rotate(img0, cv2.ROTATE_90_CLOCKWISE)
|
95 |
+
gt = cv2.rotate(gt, cv2.ROTATE_90_CLOCKWISE)
|
96 |
+
img1 = cv2.rotate(img1, cv2.ROTATE_90_CLOCKWISE)
|
97 |
+
elif p < 0.5:
|
98 |
+
img0 = cv2.rotate(img0, cv2.ROTATE_180)
|
99 |
+
gt = cv2.rotate(gt, cv2.ROTATE_180)
|
100 |
+
img1 = cv2.rotate(img1, cv2.ROTATE_180)
|
101 |
+
elif p < 0.75:
|
102 |
+
img0 = cv2.rotate(img0, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
103 |
+
gt = cv2.rotate(gt, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
104 |
+
img1 = cv2.rotate(img1, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
105 |
+
img0 = torch.from_numpy(img0.copy()).permute(2, 0, 1)
|
106 |
+
img1 = torch.from_numpy(img1.copy()).permute(2, 0, 1)
|
107 |
+
gt = torch.from_numpy(gt.copy()).permute(2, 0, 1)
|
108 |
+
timestep = torch.tensor(timestep).reshape(1, 1, 1)
|
109 |
+
return torch.cat((img0, img1, gt), 0), timestep
|
ECCV2022-RIFE-main/demo/D0_slomo_clipped.gif
ADDED
ECCV2022-RIFE-main/demo/D2_slomo_clipped.gif
ADDED
ECCV2022-RIFE-main/demo/I0_0.png
ADDED
ECCV2022-RIFE-main/demo/I0_1.png
ADDED
ECCV2022-RIFE-main/demo/I0_slomo_clipped.gif
ADDED
Git LFS Details
|
ECCV2022-RIFE-main/demo/I1_0.png
ADDED
ECCV2022-RIFE-main/demo/I1_1.png
ADDED
ECCV2022-RIFE-main/demo/I2_0.png
ADDED
ECCV2022-RIFE-main/demo/I2_1.png
ADDED
ECCV2022-RIFE-main/demo/I2_slomo_clipped.gif
ADDED
ECCV2022-RIFE-main/demo/intro.png
ADDED
ECCV2022-RIFE-main/docker/Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.8-slim
|
2 |
+
|
3 |
+
# install deps
|
4 |
+
RUN apt-get update && apt-get -y install \
|
5 |
+
bash ffmpeg
|
6 |
+
|
7 |
+
# setup RIFE
|
8 |
+
WORKDIR /rife
|
9 |
+
COPY . .
|
10 |
+
RUN pip3 install -r requirements.txt
|
11 |
+
|
12 |
+
ADD docker/inference_img /usr/local/bin/inference_img
|
13 |
+
RUN chmod +x /usr/local/bin/inference_img
|
14 |
+
ADD docker/inference_video /usr/local/bin/inference_video
|
15 |
+
RUN chmod +x /usr/local/bin/inference_video
|
16 |
+
|
17 |
+
# add pre-trained models
|
18 |
+
COPY train_log /rife/train_log
|
19 |
+
|
20 |
+
WORKDIR /host
|
21 |
+
ENTRYPOINT ["/bin/bash"]
|
22 |
+
|
23 |
+
ENV NVIDIA_DRIVER_CAPABILITIES all
|
ECCV2022-RIFE-main/docker/inference_img
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
python3 /rife/inference_img.py $@
|
ECCV2022-RIFE-main/docker/inference_video
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
python3 /rife/inference_video.py $@
|
ECCV2022-RIFE-main/inference_img.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
from torch.nn import functional as F
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings("ignore")
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
torch.set_grad_enabled(False)
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
torch.backends.cudnn.enabled = True
|
13 |
+
torch.backends.cudnn.benchmark = True
|
14 |
+
|
15 |
+
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
16 |
+
parser.add_argument('--img', dest='img', nargs=2, required=True)
|
17 |
+
parser.add_argument('--exp', default=4, type=int)
|
18 |
+
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
|
19 |
+
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
|
20 |
+
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
|
21 |
+
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
|
22 |
+
|
23 |
+
args = parser.parse_args()
|
24 |
+
|
25 |
+
try:
|
26 |
+
try:
|
27 |
+
try:
|
28 |
+
from model.RIFE_HDv2 import Model
|
29 |
+
model = Model()
|
30 |
+
model.load_model(args.modelDir, -1)
|
31 |
+
print("Loaded v2.x HD model.")
|
32 |
+
except:
|
33 |
+
from train_log.RIFE_HDv3 import Model
|
34 |
+
model = Model()
|
35 |
+
model.load_model(args.modelDir, -1)
|
36 |
+
print("Loaded v3.x HD model.")
|
37 |
+
except:
|
38 |
+
from model.RIFE_HD import Model
|
39 |
+
model = Model()
|
40 |
+
model.load_model(args.modelDir, -1)
|
41 |
+
print("Loaded v1.x HD model")
|
42 |
+
except:
|
43 |
+
from model.RIFE import Model
|
44 |
+
model = Model()
|
45 |
+
model.load_model(args.modelDir, -1)
|
46 |
+
print("Loaded ArXiv-RIFE model")
|
47 |
+
model.eval()
|
48 |
+
model.device()
|
49 |
+
|
50 |
+
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
51 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
52 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
53 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
54 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
55 |
+
|
56 |
+
else:
|
57 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
|
58 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
|
59 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
60 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
61 |
+
|
62 |
+
n, c, h, w = img0.shape
|
63 |
+
ph = ((h - 1) // 32 + 1) * 32
|
64 |
+
pw = ((w - 1) // 32 + 1) * 32
|
65 |
+
padding = (0, pw - w, 0, ph - h)
|
66 |
+
img0 = F.pad(img0, padding)
|
67 |
+
img1 = F.pad(img1, padding)
|
68 |
+
|
69 |
+
|
70 |
+
if args.ratio:
|
71 |
+
img_list = [img0]
|
72 |
+
img0_ratio = 0.0
|
73 |
+
img1_ratio = 1.0
|
74 |
+
if args.ratio <= img0_ratio + args.rthreshold / 2:
|
75 |
+
middle = img0
|
76 |
+
elif args.ratio >= img1_ratio - args.rthreshold / 2:
|
77 |
+
middle = img1
|
78 |
+
else:
|
79 |
+
tmp_img0 = img0
|
80 |
+
tmp_img1 = img1
|
81 |
+
for inference_cycle in range(args.rmaxcycles):
|
82 |
+
middle = model.inference(tmp_img0, tmp_img1)
|
83 |
+
middle_ratio = ( img0_ratio + img1_ratio ) / 2
|
84 |
+
if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
|
85 |
+
break
|
86 |
+
if args.ratio > middle_ratio:
|
87 |
+
tmp_img0 = middle
|
88 |
+
img0_ratio = middle_ratio
|
89 |
+
else:
|
90 |
+
tmp_img1 = middle
|
91 |
+
img1_ratio = middle_ratio
|
92 |
+
img_list.append(middle)
|
93 |
+
img_list.append(img1)
|
94 |
+
else:
|
95 |
+
img_list = [img0, img1]
|
96 |
+
for i in range(args.exp):
|
97 |
+
tmp = []
|
98 |
+
for j in range(len(img_list) - 1):
|
99 |
+
mid = model.inference(img_list[j], img_list[j + 1])
|
100 |
+
tmp.append(img_list[j])
|
101 |
+
tmp.append(mid)
|
102 |
+
tmp.append(img1)
|
103 |
+
img_list = tmp
|
104 |
+
|
105 |
+
if not os.path.exists('output'):
|
106 |
+
os.mkdir('output')
|
107 |
+
for i in range(len(img_list)):
|
108 |
+
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
109 |
+
cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
|
110 |
+
else:
|
111 |
+
cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
|
ECCV2022-RIFE-main/inference_video.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
from tqdm import tqdm
|
7 |
+
from torch.nn import functional as F
|
8 |
+
import warnings
|
9 |
+
import _thread
|
10 |
+
import skvideo.io
|
11 |
+
from queue import Queue, Empty
|
12 |
+
from model.pytorch_msssim import ssim_matlab
|
13 |
+
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
def transferAudio(sourceVideo, targetVideo):
|
17 |
+
import shutil
|
18 |
+
import moviepy.editor
|
19 |
+
tempAudioFileName = "./temp/audio.mkv"
|
20 |
+
|
21 |
+
# split audio from original video file and store in "temp" directory
|
22 |
+
if True:
|
23 |
+
|
24 |
+
# clear old "temp" directory if it exits
|
25 |
+
if os.path.isdir("temp"):
|
26 |
+
# remove temp directory
|
27 |
+
shutil.rmtree("temp")
|
28 |
+
# create new "temp" directory
|
29 |
+
os.makedirs("temp")
|
30 |
+
# extract audio from video
|
31 |
+
os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName))
|
32 |
+
|
33 |
+
targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1]
|
34 |
+
os.rename(targetVideo, targetNoAudio)
|
35 |
+
# combine audio file and new video file
|
36 |
+
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
|
37 |
+
|
38 |
+
if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac
|
39 |
+
tempAudioFileName = "./temp/audio.m4a"
|
40 |
+
os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName))
|
41 |
+
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
|
42 |
+
if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format
|
43 |
+
os.rename(targetNoAudio, targetVideo)
|
44 |
+
print("Audio transfer failed. Interpolated video will have no audio")
|
45 |
+
else:
|
46 |
+
print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.")
|
47 |
+
|
48 |
+
# remove audio-less video
|
49 |
+
os.remove(targetNoAudio)
|
50 |
+
else:
|
51 |
+
os.remove(targetNoAudio)
|
52 |
+
|
53 |
+
# remove temp directory
|
54 |
+
shutil.rmtree("temp")
|
55 |
+
|
56 |
+
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
57 |
+
parser.add_argument('--video', dest='video', type=str, default=None)
|
58 |
+
parser.add_argument('--output', dest='output', type=str, default=None)
|
59 |
+
parser.add_argument('--img', dest='img', type=str, default=None)
|
60 |
+
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video')
|
61 |
+
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
|
62 |
+
parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores')
|
63 |
+
parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video')
|
64 |
+
parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video')
|
65 |
+
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
|
66 |
+
parser.add_argument('--fps', dest='fps', type=int, default=None)
|
67 |
+
parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs')
|
68 |
+
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension')
|
69 |
+
parser.add_argument('--exp', dest='exp', type=int, default=1)
|
70 |
+
args = parser.parse_args()
|
71 |
+
assert (not args.video is None or not args.img is None)
|
72 |
+
if args.skip:
|
73 |
+
print("skip flag is abandoned, please refer to issue #207.")
|
74 |
+
if args.UHD and args.scale==1.0:
|
75 |
+
args.scale = 0.5
|
76 |
+
assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0]
|
77 |
+
if not args.img is None:
|
78 |
+
args.png = True
|
79 |
+
|
80 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
+
torch.set_grad_enabled(False)
|
82 |
+
if torch.cuda.is_available():
|
83 |
+
torch.backends.cudnn.enabled = True
|
84 |
+
torch.backends.cudnn.benchmark = True
|
85 |
+
if(args.fp16):
|
86 |
+
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
87 |
+
|
88 |
+
try:
|
89 |
+
try:
|
90 |
+
try:
|
91 |
+
from model.RIFE_HDv2 import Model
|
92 |
+
model = Model()
|
93 |
+
model.load_model(args.modelDir, -1)
|
94 |
+
print("Loaded v2.x HD model.")
|
95 |
+
except:
|
96 |
+
from train_log.RIFE_HDv3 import Model
|
97 |
+
model = Model()
|
98 |
+
model.load_model(args.modelDir, -1)
|
99 |
+
print("Loaded v3.x HD model.")
|
100 |
+
except:
|
101 |
+
from model.RIFE_HD import Model
|
102 |
+
model = Model()
|
103 |
+
model.load_model(args.modelDir, -1)
|
104 |
+
print("Loaded v1.x HD model")
|
105 |
+
except:
|
106 |
+
from model.RIFE import Model
|
107 |
+
model = Model()
|
108 |
+
model.load_model(args.modelDir, -1)
|
109 |
+
print("Loaded ArXiv-RIFE model")
|
110 |
+
model.eval()
|
111 |
+
model.device()
|
112 |
+
|
113 |
+
if not args.video is None:
|
114 |
+
videoCapture = cv2.VideoCapture(args.video)
|
115 |
+
fps = videoCapture.get(cv2.CAP_PROP_FPS)
|
116 |
+
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
|
117 |
+
videoCapture.release()
|
118 |
+
if args.fps is None:
|
119 |
+
fpsNotAssigned = True
|
120 |
+
args.fps = fps * (2 ** args.exp)
|
121 |
+
else:
|
122 |
+
fpsNotAssigned = False
|
123 |
+
videogen = skvideo.io.vreader(args.video)
|
124 |
+
lastframe = next(videogen)
|
125 |
+
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
126 |
+
video_path_wo_ext, ext = os.path.splitext(args.video)
|
127 |
+
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps))
|
128 |
+
if args.png == False and fpsNotAssigned == True:
|
129 |
+
print("The audio will be merged after interpolation process")
|
130 |
+
else:
|
131 |
+
print("Will not merge audio because using png or fps flag!")
|
132 |
+
else:
|
133 |
+
videogen = []
|
134 |
+
for f in os.listdir(args.img):
|
135 |
+
if 'png' in f:
|
136 |
+
videogen.append(f)
|
137 |
+
tot_frame = len(videogen)
|
138 |
+
videogen.sort(key= lambda x:int(x[:-4]))
|
139 |
+
lastframe = cv2.imread(os.path.join(args.img, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
|
140 |
+
videogen = videogen[1:]
|
141 |
+
h, w, _ = lastframe.shape
|
142 |
+
vid_out_name = None
|
143 |
+
vid_out = None
|
144 |
+
if args.png:
|
145 |
+
if not os.path.exists('vid_out'):
|
146 |
+
os.mkdir('vid_out')
|
147 |
+
else:
|
148 |
+
if args.output is not None:
|
149 |
+
vid_out_name = args.output
|
150 |
+
else:
|
151 |
+
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, (2 ** args.exp), int(np.round(args.fps)), args.ext)
|
152 |
+
vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h))
|
153 |
+
|
154 |
+
def clear_write_buffer(user_args, write_buffer):
|
155 |
+
cnt = 0
|
156 |
+
while True:
|
157 |
+
item = write_buffer.get()
|
158 |
+
if item is None:
|
159 |
+
break
|
160 |
+
if user_args.png:
|
161 |
+
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1])
|
162 |
+
cnt += 1
|
163 |
+
else:
|
164 |
+
vid_out.write(item[:, :, ::-1])
|
165 |
+
|
166 |
+
def build_read_buffer(user_args, read_buffer, videogen):
|
167 |
+
try:
|
168 |
+
for frame in videogen:
|
169 |
+
if not user_args.img is None:
|
170 |
+
frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
|
171 |
+
if user_args.montage:
|
172 |
+
frame = frame[:, left: left + w]
|
173 |
+
read_buffer.put(frame)
|
174 |
+
except:
|
175 |
+
pass
|
176 |
+
read_buffer.put(None)
|
177 |
+
|
178 |
+
def make_inference(I0, I1, n):
|
179 |
+
global model
|
180 |
+
middle = model.inference(I0, I1, args.scale)
|
181 |
+
if n == 1:
|
182 |
+
return [middle]
|
183 |
+
first_half = make_inference(I0, middle, n=n//2)
|
184 |
+
second_half = make_inference(middle, I1, n=n//2)
|
185 |
+
if n%2:
|
186 |
+
return [*first_half, middle, *second_half]
|
187 |
+
else:
|
188 |
+
return [*first_half, *second_half]
|
189 |
+
|
190 |
+
def pad_image(img):
|
191 |
+
if(args.fp16):
|
192 |
+
return F.pad(img, padding).half()
|
193 |
+
else:
|
194 |
+
return F.pad(img, padding)
|
195 |
+
|
196 |
+
if args.montage:
|
197 |
+
left = w // 4
|
198 |
+
w = w // 2
|
199 |
+
tmp = max(32, int(32 / args.scale))
|
200 |
+
ph = ((h - 1) // tmp + 1) * tmp
|
201 |
+
pw = ((w - 1) // tmp + 1) * tmp
|
202 |
+
padding = (0, pw - w, 0, ph - h)
|
203 |
+
pbar = tqdm(total=tot_frame)
|
204 |
+
if args.montage:
|
205 |
+
lastframe = lastframe[:, left: left + w]
|
206 |
+
write_buffer = Queue(maxsize=500)
|
207 |
+
read_buffer = Queue(maxsize=500)
|
208 |
+
_thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen))
|
209 |
+
_thread.start_new_thread(clear_write_buffer, (args, write_buffer))
|
210 |
+
|
211 |
+
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
|
212 |
+
I1 = pad_image(I1)
|
213 |
+
temp = None # save lastframe when processing static frame
|
214 |
+
|
215 |
+
while True:
|
216 |
+
if temp is not None:
|
217 |
+
frame = temp
|
218 |
+
temp = None
|
219 |
+
else:
|
220 |
+
frame = read_buffer.get()
|
221 |
+
if frame is None:
|
222 |
+
break
|
223 |
+
I0 = I1
|
224 |
+
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
|
225 |
+
I1 = pad_image(I1)
|
226 |
+
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
|
227 |
+
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
|
228 |
+
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
|
229 |
+
|
230 |
+
break_flag = False
|
231 |
+
if ssim > 0.996:
|
232 |
+
frame = read_buffer.get() # read a new frame
|
233 |
+
if frame is None:
|
234 |
+
break_flag = True
|
235 |
+
frame = lastframe
|
236 |
+
else:
|
237 |
+
temp = frame
|
238 |
+
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
|
239 |
+
I1 = pad_image(I1)
|
240 |
+
I1 = model.inference(I0, I1, args.scale)
|
241 |
+
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
|
242 |
+
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
|
243 |
+
frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
|
244 |
+
|
245 |
+
if ssim < 0.2:
|
246 |
+
output = []
|
247 |
+
for i in range((2 ** args.exp) - 1):
|
248 |
+
output.append(I0)
|
249 |
+
'''
|
250 |
+
output = []
|
251 |
+
step = 1 / (2 ** args.exp)
|
252 |
+
alpha = 0
|
253 |
+
for i in range((2 ** args.exp) - 1):
|
254 |
+
alpha += step
|
255 |
+
beta = 1-alpha
|
256 |
+
output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.)
|
257 |
+
'''
|
258 |
+
else:
|
259 |
+
output = make_inference(I0, I1, 2**args.exp-1) if args.exp else []
|
260 |
+
|
261 |
+
if args.montage:
|
262 |
+
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
|
263 |
+
for mid in output:
|
264 |
+
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
|
265 |
+
write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1))
|
266 |
+
else:
|
267 |
+
write_buffer.put(lastframe)
|
268 |
+
for mid in output:
|
269 |
+
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
|
270 |
+
write_buffer.put(mid[:h, :w])
|
271 |
+
pbar.update(1)
|
272 |
+
lastframe = frame
|
273 |
+
if break_flag:
|
274 |
+
break
|
275 |
+
|
276 |
+
if args.montage:
|
277 |
+
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
|
278 |
+
else:
|
279 |
+
write_buffer.put(lastframe)
|
280 |
+
import time
|
281 |
+
while(not write_buffer.empty()):
|
282 |
+
time.sleep(0.1)
|
283 |
+
pbar.close()
|
284 |
+
if not vid_out is None:
|
285 |
+
vid_out.release()
|
286 |
+
|
287 |
+
# move audio to new video file if appropriate
|
288 |
+
if args.png == False and fpsNotAssigned == True and not args.video is None:
|
289 |
+
try:
|
290 |
+
transferAudio(args.video, vid_out_name)
|
291 |
+
except:
|
292 |
+
print("Audio transfer failed. Interpolated video will have no audio")
|
293 |
+
targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1]
|
294 |
+
os.rename(targetNoAudio, vid_out_name)
|
ECCV2022-RIFE-main/model/IFNet.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from model.warplayer import warp
|
5 |
+
from model.refine import *
|
6 |
+
|
7 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
8 |
+
return nn.Sequential(
|
9 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
|
10 |
+
nn.PReLU(out_planes)
|
11 |
+
)
|
12 |
+
|
13 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
14 |
+
return nn.Sequential(
|
15 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
16 |
+
padding=padding, dilation=dilation, bias=True),
|
17 |
+
nn.PReLU(out_planes)
|
18 |
+
)
|
19 |
+
|
20 |
+
class IFBlock(nn.Module):
|
21 |
+
def __init__(self, in_planes, c=64):
|
22 |
+
super(IFBlock, self).__init__()
|
23 |
+
self.conv0 = nn.Sequential(
|
24 |
+
conv(in_planes, c//2, 3, 2, 1),
|
25 |
+
conv(c//2, c, 3, 2, 1),
|
26 |
+
)
|
27 |
+
self.convblock = nn.Sequential(
|
28 |
+
conv(c, c),
|
29 |
+
conv(c, c),
|
30 |
+
conv(c, c),
|
31 |
+
conv(c, c),
|
32 |
+
conv(c, c),
|
33 |
+
conv(c, c),
|
34 |
+
conv(c, c),
|
35 |
+
conv(c, c),
|
36 |
+
)
|
37 |
+
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
|
38 |
+
|
39 |
+
def forward(self, x, flow, scale):
|
40 |
+
if scale != 1:
|
41 |
+
x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False)
|
42 |
+
if flow != None:
|
43 |
+
flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
|
44 |
+
x = torch.cat((x, flow), 1)
|
45 |
+
x = self.conv0(x)
|
46 |
+
x = self.convblock(x) + x
|
47 |
+
tmp = self.lastconv(x)
|
48 |
+
tmp = F.interpolate(tmp, scale_factor = scale * 2, mode="bilinear", align_corners=False)
|
49 |
+
flow = tmp[:, :4] * scale * 2
|
50 |
+
mask = tmp[:, 4:5]
|
51 |
+
return flow, mask
|
52 |
+
|
53 |
+
class IFNet(nn.Module):
|
54 |
+
def __init__(self):
|
55 |
+
super(IFNet, self).__init__()
|
56 |
+
self.block0 = IFBlock(6, c=240)
|
57 |
+
self.block1 = IFBlock(13+4, c=150)
|
58 |
+
self.block2 = IFBlock(13+4, c=90)
|
59 |
+
self.block_tea = IFBlock(16+4, c=90)
|
60 |
+
self.contextnet = Contextnet()
|
61 |
+
self.unet = Unet()
|
62 |
+
|
63 |
+
def forward(self, x, scale=[4,2,1], timestep=0.5):
|
64 |
+
img0 = x[:, :3]
|
65 |
+
img1 = x[:, 3:6]
|
66 |
+
gt = x[:, 6:] # In inference time, gt is None
|
67 |
+
flow_list = []
|
68 |
+
merged = []
|
69 |
+
mask_list = []
|
70 |
+
warped_img0 = img0
|
71 |
+
warped_img1 = img1
|
72 |
+
flow = None
|
73 |
+
loss_distill = 0
|
74 |
+
stu = [self.block0, self.block1, self.block2]
|
75 |
+
for i in range(3):
|
76 |
+
if flow != None:
|
77 |
+
flow_d, mask_d = stu[i](torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
|
78 |
+
flow = flow + flow_d
|
79 |
+
mask = mask + mask_d
|
80 |
+
else:
|
81 |
+
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
|
82 |
+
mask_list.append(torch.sigmoid(mask))
|
83 |
+
flow_list.append(flow)
|
84 |
+
warped_img0 = warp(img0, flow[:, :2])
|
85 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
86 |
+
merged_student = (warped_img0, warped_img1)
|
87 |
+
merged.append(merged_student)
|
88 |
+
if gt.shape[1] == 3:
|
89 |
+
flow_d, mask_d = self.block_tea(torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
|
90 |
+
flow_teacher = flow + flow_d
|
91 |
+
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
|
92 |
+
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
|
93 |
+
mask_teacher = torch.sigmoid(mask + mask_d)
|
94 |
+
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
|
95 |
+
else:
|
96 |
+
flow_teacher = None
|
97 |
+
merged_teacher = None
|
98 |
+
for i in range(3):
|
99 |
+
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
100 |
+
if gt.shape[1] == 3:
|
101 |
+
loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
|
102 |
+
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
|
103 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
104 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
105 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
106 |
+
res = tmp[:, :3] * 2 - 1
|
107 |
+
merged[2] = torch.clamp(merged[2] + res, 0, 1)
|
108 |
+
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
|
ECCV2022-RIFE-main/model/IFNet_2R.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from model.warplayer import warp
|
5 |
+
from model.refine_2R import *
|
6 |
+
|
7 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
8 |
+
return nn.Sequential(
|
9 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
|
10 |
+
nn.PReLU(out_planes)
|
11 |
+
)
|
12 |
+
|
13 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
14 |
+
return nn.Sequential(
|
15 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
16 |
+
padding=padding, dilation=dilation, bias=True),
|
17 |
+
nn.PReLU(out_planes)
|
18 |
+
)
|
19 |
+
|
20 |
+
class IFBlock(nn.Module):
|
21 |
+
def __init__(self, in_planes, c=64):
|
22 |
+
super(IFBlock, self).__init__()
|
23 |
+
self.conv0 = nn.Sequential(
|
24 |
+
conv(in_planes, c//2, 3, 1, 1),
|
25 |
+
conv(c//2, c, 3, 2, 1),
|
26 |
+
)
|
27 |
+
self.convblock = nn.Sequential(
|
28 |
+
conv(c, c),
|
29 |
+
conv(c, c),
|
30 |
+
conv(c, c),
|
31 |
+
conv(c, c),
|
32 |
+
conv(c, c),
|
33 |
+
conv(c, c),
|
34 |
+
conv(c, c),
|
35 |
+
conv(c, c),
|
36 |
+
)
|
37 |
+
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
|
38 |
+
|
39 |
+
def forward(self, x, flow, scale):
|
40 |
+
if scale != 1:
|
41 |
+
x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False)
|
42 |
+
if flow != None:
|
43 |
+
flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
|
44 |
+
x = torch.cat((x, flow), 1)
|
45 |
+
x = self.conv0(x)
|
46 |
+
x = self.convblock(x) + x
|
47 |
+
tmp = self.lastconv(x)
|
48 |
+
tmp = F.interpolate(tmp, scale_factor = scale, mode="bilinear", align_corners=False)
|
49 |
+
flow = tmp[:, :4] * scale
|
50 |
+
mask = tmp[:, 4:5]
|
51 |
+
return flow, mask
|
52 |
+
|
53 |
+
class IFNet(nn.Module):
|
54 |
+
def __init__(self):
|
55 |
+
super(IFNet, self).__init__()
|
56 |
+
self.block0 = IFBlock(6, c=240)
|
57 |
+
self.block1 = IFBlock(13+4, c=150)
|
58 |
+
self.block2 = IFBlock(13+4, c=90)
|
59 |
+
self.block_tea = IFBlock(16+4, c=90)
|
60 |
+
self.contextnet = Contextnet()
|
61 |
+
self.unet = Unet()
|
62 |
+
|
63 |
+
def forward(self, x, scale=[4,2,1], timestep=0.5):
|
64 |
+
img0 = x[:, :3]
|
65 |
+
img1 = x[:, 3:6]
|
66 |
+
gt = x[:, 6:] # In inference time, gt is None
|
67 |
+
flow_list = []
|
68 |
+
merged = []
|
69 |
+
mask_list = []
|
70 |
+
warped_img0 = img0
|
71 |
+
warped_img1 = img1
|
72 |
+
flow = None
|
73 |
+
loss_distill = 0
|
74 |
+
stu = [self.block0, self.block1, self.block2]
|
75 |
+
for i in range(3):
|
76 |
+
if flow != None:
|
77 |
+
flow_d, mask_d = stu[i](torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
|
78 |
+
flow = flow + flow_d
|
79 |
+
mask = mask + mask_d
|
80 |
+
else:
|
81 |
+
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
|
82 |
+
mask_list.append(torch.sigmoid(mask))
|
83 |
+
flow_list.append(flow)
|
84 |
+
warped_img0 = warp(img0, flow[:, :2])
|
85 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
86 |
+
merged_student = (warped_img0, warped_img1)
|
87 |
+
merged.append(merged_student)
|
88 |
+
if gt.shape[1] == 3:
|
89 |
+
flow_d, mask_d = self.block_tea(torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
|
90 |
+
flow_teacher = flow + flow_d
|
91 |
+
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
|
92 |
+
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
|
93 |
+
mask_teacher = torch.sigmoid(mask + mask_d)
|
94 |
+
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
|
95 |
+
else:
|
96 |
+
flow_teacher = None
|
97 |
+
merged_teacher = None
|
98 |
+
for i in range(3):
|
99 |
+
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
100 |
+
if gt.shape[1] == 3:
|
101 |
+
loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
|
102 |
+
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
|
103 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
104 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
105 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
106 |
+
res = tmp[:, :3] * 2 - 1
|
107 |
+
merged[2] = torch.clamp(merged[2] + res, 0, 1)
|
108 |
+
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
|
ECCV2022-RIFE-main/model/IFNet_m.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from model.warplayer import warp
|
5 |
+
from model.refine import *
|
6 |
+
|
7 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
8 |
+
return nn.Sequential(
|
9 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
|
10 |
+
nn.PReLU(out_planes)
|
11 |
+
)
|
12 |
+
|
13 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
14 |
+
return nn.Sequential(
|
15 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
16 |
+
padding=padding, dilation=dilation, bias=True),
|
17 |
+
nn.PReLU(out_planes)
|
18 |
+
)
|
19 |
+
|
20 |
+
class IFBlock(nn.Module):
|
21 |
+
def __init__(self, in_planes, c=64):
|
22 |
+
super(IFBlock, self).__init__()
|
23 |
+
self.conv0 = nn.Sequential(
|
24 |
+
conv(in_planes, c//2, 3, 2, 1),
|
25 |
+
conv(c//2, c, 3, 2, 1),
|
26 |
+
)
|
27 |
+
self.convblock = nn.Sequential(
|
28 |
+
conv(c, c),
|
29 |
+
conv(c, c),
|
30 |
+
conv(c, c),
|
31 |
+
conv(c, c),
|
32 |
+
conv(c, c),
|
33 |
+
conv(c, c),
|
34 |
+
conv(c, c),
|
35 |
+
conv(c, c),
|
36 |
+
)
|
37 |
+
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
|
38 |
+
|
39 |
+
def forward(self, x, flow, scale):
|
40 |
+
if scale != 1:
|
41 |
+
x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False)
|
42 |
+
if flow != None:
|
43 |
+
flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
|
44 |
+
x = torch.cat((x, flow), 1)
|
45 |
+
x = self.conv0(x)
|
46 |
+
x = self.convblock(x) + x
|
47 |
+
tmp = self.lastconv(x)
|
48 |
+
tmp = F.interpolate(tmp, scale_factor = scale * 2, mode="bilinear", align_corners=False)
|
49 |
+
flow = tmp[:, :4] * scale * 2
|
50 |
+
mask = tmp[:, 4:5]
|
51 |
+
return flow, mask
|
52 |
+
|
53 |
+
class IFNet_m(nn.Module):
|
54 |
+
def __init__(self):
|
55 |
+
super(IFNet_m, self).__init__()
|
56 |
+
self.block0 = IFBlock(6+1, c=240)
|
57 |
+
self.block1 = IFBlock(13+4+1, c=150)
|
58 |
+
self.block2 = IFBlock(13+4+1, c=90)
|
59 |
+
self.block_tea = IFBlock(16+4+1, c=90)
|
60 |
+
self.contextnet = Contextnet()
|
61 |
+
self.unet = Unet()
|
62 |
+
|
63 |
+
def forward(self, x, scale=[4,2,1], timestep=0.5, returnflow=False):
|
64 |
+
timestep = (x[:, :1].clone() * 0 + 1) * timestep
|
65 |
+
img0 = x[:, :3]
|
66 |
+
img1 = x[:, 3:6]
|
67 |
+
gt = x[:, 6:] # In inference time, gt is None
|
68 |
+
flow_list = []
|
69 |
+
merged = []
|
70 |
+
mask_list = []
|
71 |
+
warped_img0 = img0
|
72 |
+
warped_img1 = img1
|
73 |
+
flow = None
|
74 |
+
loss_distill = 0
|
75 |
+
stu = [self.block0, self.block1, self.block2]
|
76 |
+
for i in range(3):
|
77 |
+
if flow != None:
|
78 |
+
flow_d, mask_d = stu[i](torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
|
79 |
+
flow = flow + flow_d
|
80 |
+
mask = mask + mask_d
|
81 |
+
else:
|
82 |
+
flow, mask = stu[i](torch.cat((img0, img1, timestep), 1), None, scale=scale[i])
|
83 |
+
mask_list.append(torch.sigmoid(mask))
|
84 |
+
flow_list.append(flow)
|
85 |
+
warped_img0 = warp(img0, flow[:, :2])
|
86 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
87 |
+
merged_student = (warped_img0, warped_img1)
|
88 |
+
merged.append(merged_student)
|
89 |
+
if gt.shape[1] == 3:
|
90 |
+
flow_d, mask_d = self.block_tea(torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
|
91 |
+
flow_teacher = flow + flow_d
|
92 |
+
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
|
93 |
+
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
|
94 |
+
mask_teacher = torch.sigmoid(mask + mask_d)
|
95 |
+
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
|
96 |
+
else:
|
97 |
+
flow_teacher = None
|
98 |
+
merged_teacher = None
|
99 |
+
for i in range(3):
|
100 |
+
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
101 |
+
if gt.shape[1] == 3:
|
102 |
+
loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
|
103 |
+
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
|
104 |
+
if returnflow:
|
105 |
+
return flow
|
106 |
+
else:
|
107 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
108 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
109 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
110 |
+
res = tmp[:, :3] * 2 - 1
|
111 |
+
merged[2] = torch.clamp(merged[2] + res, 0, 1)
|
112 |
+
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
|
ECCV2022-RIFE-main/model/RIFE.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from torch.optim import AdamW
|
5 |
+
import torch.optim as optim
|
6 |
+
import itertools
|
7 |
+
from model.warplayer import warp
|
8 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
9 |
+
from model.IFNet import *
|
10 |
+
from model.IFNet_m import *
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from model.loss import *
|
13 |
+
from model.laplacian import *
|
14 |
+
from model.refine import *
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
class Model:
|
19 |
+
def __init__(self, local_rank=-1, arbitrary=False):
|
20 |
+
if arbitrary == True:
|
21 |
+
self.flownet = IFNet_m()
|
22 |
+
else:
|
23 |
+
self.flownet = IFNet()
|
24 |
+
self.device()
|
25 |
+
self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-3) # use large weight decay may avoid NaN loss
|
26 |
+
self.epe = EPE()
|
27 |
+
self.lap = LapLoss()
|
28 |
+
self.sobel = SOBEL()
|
29 |
+
if local_rank != -1:
|
30 |
+
self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
|
31 |
+
|
32 |
+
def train(self):
|
33 |
+
self.flownet.train()
|
34 |
+
|
35 |
+
def eval(self):
|
36 |
+
self.flownet.eval()
|
37 |
+
|
38 |
+
def device(self):
|
39 |
+
self.flownet.to(device)
|
40 |
+
|
41 |
+
def load_model(self, path, rank=0):
|
42 |
+
def convert(param):
|
43 |
+
return {
|
44 |
+
k.replace("module.", ""): v
|
45 |
+
for k, v in param.items()
|
46 |
+
if "module." in k
|
47 |
+
}
|
48 |
+
|
49 |
+
if rank <= 0:
|
50 |
+
self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path))))
|
51 |
+
|
52 |
+
def save_model(self, path, rank=0):
|
53 |
+
if rank == 0:
|
54 |
+
torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path))
|
55 |
+
|
56 |
+
def inference(self, img0, img1, scale=1, scale_list=[4, 2, 1], TTA=False, timestep=0.5):
|
57 |
+
for i in range(3):
|
58 |
+
scale_list[i] = scale_list[i] * 1.0 / scale
|
59 |
+
imgs = torch.cat((img0, img1), 1)
|
60 |
+
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(imgs, scale_list, timestep=timestep)
|
61 |
+
if TTA == False:
|
62 |
+
return merged[2]
|
63 |
+
else:
|
64 |
+
flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(imgs.flip(2).flip(3), scale_list, timestep=timestep)
|
65 |
+
return (merged[2] + merged2[2].flip(2).flip(3)) / 2
|
66 |
+
|
67 |
+
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
68 |
+
for param_group in self.optimG.param_groups:
|
69 |
+
param_group['lr'] = learning_rate
|
70 |
+
img0 = imgs[:, :3]
|
71 |
+
img1 = imgs[:, 3:]
|
72 |
+
if training:
|
73 |
+
self.train()
|
74 |
+
else:
|
75 |
+
self.eval()
|
76 |
+
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(torch.cat((imgs, gt), 1), scale=[4, 2, 1])
|
77 |
+
loss_l1 = (self.lap(merged[2], gt)).mean()
|
78 |
+
loss_tea = (self.lap(merged_teacher, gt)).mean()
|
79 |
+
if training:
|
80 |
+
self.optimG.zero_grad()
|
81 |
+
loss_G = loss_l1 + loss_tea + loss_distill * 0.01 # when training RIFEm, the weight of loss_distill should be 0.005 or 0.002
|
82 |
+
loss_G.backward()
|
83 |
+
self.optimG.step()
|
84 |
+
else:
|
85 |
+
flow_teacher = flow[2]
|
86 |
+
return merged[2], {
|
87 |
+
'merged_tea': merged_teacher,
|
88 |
+
'mask': mask,
|
89 |
+
'mask_tea': mask,
|
90 |
+
'flow': flow[2][:, :2],
|
91 |
+
'flow_tea': flow_teacher,
|
92 |
+
'loss_l1': loss_l1,
|
93 |
+
'loss_tea': loss_tea,
|
94 |
+
'loss_distill': loss_distill,
|
95 |
+
}
|
ECCV2022-RIFE-main/model/laplacian.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
def gauss_kernel(size=5, channels=3):
|
11 |
+
kernel = torch.tensor([[1., 4., 6., 4., 1],
|
12 |
+
[4., 16., 24., 16., 4.],
|
13 |
+
[6., 24., 36., 24., 6.],
|
14 |
+
[4., 16., 24., 16., 4.],
|
15 |
+
[1., 4., 6., 4., 1.]])
|
16 |
+
kernel /= 256.
|
17 |
+
kernel = kernel.repeat(channels, 1, 1, 1)
|
18 |
+
kernel = kernel.to(device)
|
19 |
+
return kernel
|
20 |
+
|
21 |
+
def downsample(x):
|
22 |
+
return x[:, :, ::2, ::2]
|
23 |
+
|
24 |
+
def upsample(x):
|
25 |
+
cc = torch.cat([x, torch.zeros(x.shape[0], x.shape[1], x.shape[2], x.shape[3]).to(device)], dim=3)
|
26 |
+
cc = cc.view(x.shape[0], x.shape[1], x.shape[2]*2, x.shape[3])
|
27 |
+
cc = cc.permute(0,1,3,2)
|
28 |
+
cc = torch.cat([cc, torch.zeros(x.shape[0], x.shape[1], x.shape[3], x.shape[2]*2).to(device)], dim=3)
|
29 |
+
cc = cc.view(x.shape[0], x.shape[1], x.shape[3]*2, x.shape[2]*2)
|
30 |
+
x_up = cc.permute(0,1,3,2)
|
31 |
+
return conv_gauss(x_up, 4*gauss_kernel(channels=x.shape[1]))
|
32 |
+
|
33 |
+
def conv_gauss(img, kernel):
|
34 |
+
img = torch.nn.functional.pad(img, (2, 2, 2, 2), mode='reflect')
|
35 |
+
out = torch.nn.functional.conv2d(img, kernel, groups=img.shape[1])
|
36 |
+
return out
|
37 |
+
|
38 |
+
def laplacian_pyramid(img, kernel, max_levels=3):
|
39 |
+
current = img
|
40 |
+
pyr = []
|
41 |
+
for level in range(max_levels):
|
42 |
+
filtered = conv_gauss(current, kernel)
|
43 |
+
down = downsample(filtered)
|
44 |
+
up = upsample(down)
|
45 |
+
diff = current-up
|
46 |
+
pyr.append(diff)
|
47 |
+
current = down
|
48 |
+
return pyr
|
49 |
+
|
50 |
+
class LapLoss(torch.nn.Module):
|
51 |
+
def __init__(self, max_levels=5, channels=3):
|
52 |
+
super(LapLoss, self).__init__()
|
53 |
+
self.max_levels = max_levels
|
54 |
+
self.gauss_kernel = gauss_kernel(channels=channels)
|
55 |
+
|
56 |
+
def forward(self, input, target):
|
57 |
+
pyr_input = laplacian_pyramid(img=input, kernel=self.gauss_kernel, max_levels=self.max_levels)
|
58 |
+
pyr_target = laplacian_pyramid(img=target, kernel=self.gauss_kernel, max_levels=self.max_levels)
|
59 |
+
return sum(torch.nn.functional.l1_loss(a, b) for a, b in zip(pyr_input, pyr_target))
|
ECCV2022-RIFE-main/model/loss.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision.models as models
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
|
10 |
+
class EPE(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super(EPE, self).__init__()
|
13 |
+
|
14 |
+
def forward(self, flow, gt, loss_mask):
|
15 |
+
loss_map = (flow - gt.detach()) ** 2
|
16 |
+
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
|
17 |
+
return (loss_map * loss_mask)
|
18 |
+
|
19 |
+
|
20 |
+
class Ternary(nn.Module):
|
21 |
+
def __init__(self):
|
22 |
+
super(Ternary, self).__init__()
|
23 |
+
patch_size = 7
|
24 |
+
out_channels = patch_size * patch_size
|
25 |
+
self.w = np.eye(out_channels).reshape(
|
26 |
+
(patch_size, patch_size, 1, out_channels))
|
27 |
+
self.w = np.transpose(self.w, (3, 2, 0, 1))
|
28 |
+
self.w = torch.tensor(self.w).float().to(device)
|
29 |
+
|
30 |
+
def transform(self, img):
|
31 |
+
patches = F.conv2d(img, self.w, padding=3, bias=None)
|
32 |
+
transf = patches - img
|
33 |
+
transf_norm = transf / torch.sqrt(0.81 + transf**2)
|
34 |
+
return transf_norm
|
35 |
+
|
36 |
+
def rgb2gray(self, rgb):
|
37 |
+
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
|
38 |
+
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
|
39 |
+
return gray
|
40 |
+
|
41 |
+
def hamming(self, t1, t2):
|
42 |
+
dist = (t1 - t2) ** 2
|
43 |
+
dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
|
44 |
+
return dist_norm
|
45 |
+
|
46 |
+
def valid_mask(self, t, padding):
|
47 |
+
n, _, h, w = t.size()
|
48 |
+
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
|
49 |
+
mask = F.pad(inner, [padding] * 4)
|
50 |
+
return mask
|
51 |
+
|
52 |
+
def forward(self, img0, img1):
|
53 |
+
img0 = self.transform(self.rgb2gray(img0))
|
54 |
+
img1 = self.transform(self.rgb2gray(img1))
|
55 |
+
return self.hamming(img0, img1) * self.valid_mask(img0, 1)
|
56 |
+
|
57 |
+
|
58 |
+
class SOBEL(nn.Module):
|
59 |
+
def __init__(self):
|
60 |
+
super(SOBEL, self).__init__()
|
61 |
+
self.kernelX = torch.tensor([
|
62 |
+
[1, 0, -1],
|
63 |
+
[2, 0, -2],
|
64 |
+
[1, 0, -1],
|
65 |
+
]).float()
|
66 |
+
self.kernelY = self.kernelX.clone().T
|
67 |
+
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
|
68 |
+
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
|
69 |
+
|
70 |
+
def forward(self, pred, gt):
|
71 |
+
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
|
72 |
+
img_stack = torch.cat(
|
73 |
+
[pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0)
|
74 |
+
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
|
75 |
+
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
|
76 |
+
pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:]
|
77 |
+
pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:]
|
78 |
+
|
79 |
+
L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y)
|
80 |
+
loss = (L1X+L1Y)
|
81 |
+
return loss
|
82 |
+
|
83 |
+
class MeanShift(nn.Conv2d):
|
84 |
+
def __init__(self, data_mean, data_std, data_range=1, norm=True):
|
85 |
+
c = len(data_mean)
|
86 |
+
super(MeanShift, self).__init__(c, c, kernel_size=1)
|
87 |
+
std = torch.Tensor(data_std)
|
88 |
+
self.weight.data = torch.eye(c).view(c, c, 1, 1)
|
89 |
+
if norm:
|
90 |
+
self.weight.data.div_(std.view(c, 1, 1, 1))
|
91 |
+
self.bias.data = -1 * data_range * torch.Tensor(data_mean)
|
92 |
+
self.bias.data.div_(std)
|
93 |
+
else:
|
94 |
+
self.weight.data.mul_(std.view(c, 1, 1, 1))
|
95 |
+
self.bias.data = data_range * torch.Tensor(data_mean)
|
96 |
+
self.requires_grad = False
|
97 |
+
|
98 |
+
class VGGPerceptualLoss(torch.nn.Module):
|
99 |
+
def __init__(self, rank=0):
|
100 |
+
super(VGGPerceptualLoss, self).__init__()
|
101 |
+
blocks = []
|
102 |
+
pretrained = True
|
103 |
+
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
|
104 |
+
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
|
105 |
+
for param in self.parameters():
|
106 |
+
param.requires_grad = False
|
107 |
+
|
108 |
+
def forward(self, X, Y, indices=None):
|
109 |
+
X = self.normalize(X)
|
110 |
+
Y = self.normalize(Y)
|
111 |
+
indices = [2, 7, 12, 21, 30]
|
112 |
+
weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5]
|
113 |
+
k = 0
|
114 |
+
loss = 0
|
115 |
+
for i in range(indices[-1]):
|
116 |
+
X = self.vgg_pretrained_features[i](X)
|
117 |
+
Y = self.vgg_pretrained_features[i](Y)
|
118 |
+
if (i+1) in indices:
|
119 |
+
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
|
120 |
+
k += 1
|
121 |
+
return loss
|
122 |
+
|
123 |
+
if __name__ == '__main__':
|
124 |
+
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
125 |
+
img1 = torch.tensor(np.random.normal(
|
126 |
+
0, 1, (3, 3, 256, 256))).float().to(device)
|
127 |
+
ternary_loss = Ternary()
|
128 |
+
print(ternary_loss(img0, img1).shape)
|
ECCV2022-RIFE-main/model/oldmodel/IFNet_HD.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from model.warplayer import warp
|
6 |
+
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
11 |
+
return nn.Sequential(
|
12 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
13 |
+
padding=padding, dilation=dilation, bias=False),
|
14 |
+
nn.BatchNorm2d(out_planes),
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
19 |
+
return nn.Sequential(
|
20 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
21 |
+
padding=padding, dilation=dilation, bias=False),
|
22 |
+
nn.BatchNorm2d(out_planes),
|
23 |
+
nn.PReLU(out_planes)
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
class ResBlock(nn.Module):
|
28 |
+
def __init__(self, in_planes, out_planes, stride=1):
|
29 |
+
super(ResBlock, self).__init__()
|
30 |
+
if in_planes == out_planes and stride == 1:
|
31 |
+
self.conv0 = nn.Identity()
|
32 |
+
else:
|
33 |
+
self.conv0 = nn.Conv2d(in_planes, out_planes,
|
34 |
+
3, stride, 1, bias=False)
|
35 |
+
self.conv1 = conv(in_planes, out_planes, 5, stride, 2)
|
36 |
+
self.conv2 = conv_wo_act(out_planes, out_planes, 3, 1, 1)
|
37 |
+
self.relu1 = nn.PReLU(1)
|
38 |
+
self.relu2 = nn.PReLU(out_planes)
|
39 |
+
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
|
40 |
+
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
y = self.conv0(x)
|
44 |
+
x = self.conv1(x)
|
45 |
+
x = self.conv2(x)
|
46 |
+
w = x.mean(3, True).mean(2, True)
|
47 |
+
w = self.relu1(self.fc1(w))
|
48 |
+
w = torch.sigmoid(self.fc2(w))
|
49 |
+
x = self.relu2(x * w + y)
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
class IFBlock(nn.Module):
|
54 |
+
def __init__(self, in_planes, scale=1, c=64):
|
55 |
+
super(IFBlock, self).__init__()
|
56 |
+
self.scale = scale
|
57 |
+
self.conv0 = conv(in_planes, c, 5, 2, 2)
|
58 |
+
self.res0 = ResBlock(c, c)
|
59 |
+
self.res1 = ResBlock(c, c)
|
60 |
+
self.res2 = ResBlock(c, c)
|
61 |
+
self.res3 = ResBlock(c, c)
|
62 |
+
self.res4 = ResBlock(c, c)
|
63 |
+
self.res5 = ResBlock(c, c)
|
64 |
+
self.conv1 = nn.Conv2d(c, 8, 3, 1, 1)
|
65 |
+
self.up = nn.PixelShuffle(2)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.scale != 1:
|
69 |
+
x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear",
|
70 |
+
align_corners=False)
|
71 |
+
x = self.conv0(x)
|
72 |
+
x = self.res0(x)
|
73 |
+
x = self.res1(x)
|
74 |
+
x = self.res2(x)
|
75 |
+
x = self.res3(x)
|
76 |
+
x = self.res4(x)
|
77 |
+
x = self.res5(x)
|
78 |
+
x = self.conv1(x)
|
79 |
+
flow = self.up(x)
|
80 |
+
if self.scale != 1:
|
81 |
+
flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear",
|
82 |
+
align_corners=False)
|
83 |
+
return flow
|
84 |
+
|
85 |
+
|
86 |
+
class IFNet(nn.Module):
|
87 |
+
def __init__(self):
|
88 |
+
super(IFNet, self).__init__()
|
89 |
+
self.block0 = IFBlock(6, scale=8, c=192)
|
90 |
+
self.block1 = IFBlock(8, scale=4, c=128)
|
91 |
+
self.block2 = IFBlock(8, scale=2, c=96)
|
92 |
+
self.block3 = IFBlock(8, scale=1, c=48)
|
93 |
+
|
94 |
+
def forward(self, x, scale=1.0):
|
95 |
+
x = F.interpolate(x, scale_factor=0.5 * scale, mode="bilinear",
|
96 |
+
align_corners=False)
|
97 |
+
flow0 = self.block0(x)
|
98 |
+
F1 = flow0
|
99 |
+
warped_img0 = warp(x[:, :3], F1)
|
100 |
+
warped_img1 = warp(x[:, 3:], -F1)
|
101 |
+
flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1), 1))
|
102 |
+
F2 = (flow0 + flow1)
|
103 |
+
warped_img0 = warp(x[:, :3], F2)
|
104 |
+
warped_img1 = warp(x[:, 3:], -F2)
|
105 |
+
flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2), 1))
|
106 |
+
F3 = (flow0 + flow1 + flow2)
|
107 |
+
warped_img0 = warp(x[:, :3], F3)
|
108 |
+
warped_img1 = warp(x[:, 3:], -F3)
|
109 |
+
flow3 = self.block3(torch.cat((warped_img0, warped_img1, F3), 1))
|
110 |
+
F4 = (flow0 + flow1 + flow2 + flow3)
|
111 |
+
F4 = F.interpolate(F4, scale_factor=1 / scale, mode="bilinear",
|
112 |
+
align_corners=False) / scale
|
113 |
+
return F4, [F1, F2, F3, F4]
|
114 |
+
|
115 |
+
if __name__ == '__main__':
|
116 |
+
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
117 |
+
img1 = torch.tensor(np.random.normal(
|
118 |
+
0, 1, (3, 3, 256, 256))).float().to(device)
|
119 |
+
imgs = torch.cat((img0, img1), 1)
|
120 |
+
flownet = IFNet()
|
121 |
+
flow, _ = flownet(imgs)
|
122 |
+
print(flow.shape)
|
ECCV2022-RIFE-main/model/oldmodel/IFNet_HDv2.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from model.warplayer import warp
|
6 |
+
|
7 |
+
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
11 |
+
return nn.Sequential(
|
12 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
13 |
+
padding=padding, dilation=dilation, bias=True),
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
18 |
+
return nn.Sequential(
|
19 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
20 |
+
padding=padding, dilation=dilation, bias=True),
|
21 |
+
nn.PReLU(out_planes)
|
22 |
+
)
|
23 |
+
|
24 |
+
class IFBlock(nn.Module):
|
25 |
+
def __init__(self, in_planes, scale=1, c=64):
|
26 |
+
super(IFBlock, self).__init__()
|
27 |
+
self.scale = scale
|
28 |
+
self.conv0 = nn.Sequential(
|
29 |
+
conv(in_planes, c, 3, 2, 1),
|
30 |
+
conv(c, 2*c, 3, 2, 1),
|
31 |
+
)
|
32 |
+
self.convblock = nn.Sequential(
|
33 |
+
conv(2*c, 2*c),
|
34 |
+
conv(2*c, 2*c),
|
35 |
+
conv(2*c, 2*c),
|
36 |
+
conv(2*c, 2*c),
|
37 |
+
conv(2*c, 2*c),
|
38 |
+
conv(2*c, 2*c),
|
39 |
+
)
|
40 |
+
self.conv1 = nn.ConvTranspose2d(2*c, 4, 4, 2, 1)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
if self.scale != 1:
|
44 |
+
x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear",
|
45 |
+
align_corners=False)
|
46 |
+
x = self.conv0(x)
|
47 |
+
x = self.convblock(x)
|
48 |
+
x = self.conv1(x)
|
49 |
+
flow = x
|
50 |
+
if self.scale != 1:
|
51 |
+
flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear",
|
52 |
+
align_corners=False)
|
53 |
+
return flow
|
54 |
+
|
55 |
+
|
56 |
+
class IFNet(nn.Module):
|
57 |
+
def __init__(self):
|
58 |
+
super(IFNet, self).__init__()
|
59 |
+
self.block0 = IFBlock(6, scale=8, c=192)
|
60 |
+
self.block1 = IFBlock(10, scale=4, c=128)
|
61 |
+
self.block2 = IFBlock(10, scale=2, c=96)
|
62 |
+
self.block3 = IFBlock(10, scale=1, c=48)
|
63 |
+
|
64 |
+
def forward(self, x, scale=1.0):
|
65 |
+
if scale != 1.0:
|
66 |
+
x = F.interpolate(x, scale_factor=scale, mode="bilinear", align_corners=False)
|
67 |
+
flow0 = self.block0(x)
|
68 |
+
F1 = flow0
|
69 |
+
F1_large = F.interpolate(F1, scale_factor=2.0, mode="bilinear", align_corners=False) * 2.0
|
70 |
+
warped_img0 = warp(x[:, :3], F1_large[:, :2])
|
71 |
+
warped_img1 = warp(x[:, 3:], F1_large[:, 2:4])
|
72 |
+
flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1_large), 1))
|
73 |
+
F2 = (flow0 + flow1)
|
74 |
+
F2_large = F.interpolate(F2, scale_factor=2.0, mode="bilinear", align_corners=False) * 2.0
|
75 |
+
warped_img0 = warp(x[:, :3], F2_large[:, :2])
|
76 |
+
warped_img1 = warp(x[:, 3:], F2_large[:, 2:4])
|
77 |
+
flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2_large), 1))
|
78 |
+
F3 = (flow0 + flow1 + flow2)
|
79 |
+
F3_large = F.interpolate(F3, scale_factor=2.0, mode="bilinear", align_corners=False) * 2.0
|
80 |
+
warped_img0 = warp(x[:, :3], F3_large[:, :2])
|
81 |
+
warped_img1 = warp(x[:, 3:], F3_large[:, 2:4])
|
82 |
+
flow3 = self.block3(torch.cat((warped_img0, warped_img1, F3_large), 1))
|
83 |
+
F4 = (flow0 + flow1 + flow2 + flow3)
|
84 |
+
if scale != 1.0:
|
85 |
+
F4 = F.interpolate(F4, scale_factor=1 / scale, mode="bilinear", align_corners=False) / scale
|
86 |
+
return F4, [F1, F2, F3, F4]
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
90 |
+
img1 = torch.tensor(np.random.normal(
|
91 |
+
0, 1, (3, 3, 256, 256))).float().to(device)
|
92 |
+
imgs = torch.cat((img0, img1), 1)
|
93 |
+
flownet = IFNet()
|
94 |
+
flow, _ = flownet(imgs)
|
95 |
+
print(flow.shape)
|
ECCV2022-RIFE-main/model/oldmodel/RIFE_HD.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from torch.optim import AdamW
|
5 |
+
import torch.optim as optim
|
6 |
+
import itertools
|
7 |
+
from model.warplayer import warp
|
8 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
9 |
+
from model.oldmodel.IFNet_HD import *
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from model.loss import *
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
|
16 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
17 |
+
return nn.Sequential(
|
18 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
19 |
+
padding=padding, dilation=dilation, bias=True),
|
20 |
+
nn.PReLU(out_planes)
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
25 |
+
return nn.Sequential(
|
26 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
|
27 |
+
kernel_size=4, stride=2, padding=1, bias=True),
|
28 |
+
nn.PReLU(out_planes)
|
29 |
+
)
|
30 |
+
|
31 |
+
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
32 |
+
return nn.Sequential(
|
33 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
34 |
+
padding=padding, dilation=dilation, bias=True),
|
35 |
+
)
|
36 |
+
|
37 |
+
class ResBlock(nn.Module):
|
38 |
+
def __init__(self, in_planes, out_planes, stride=2):
|
39 |
+
super(ResBlock, self).__init__()
|
40 |
+
if in_planes == out_planes and stride == 1:
|
41 |
+
self.conv0 = nn.Identity()
|
42 |
+
else:
|
43 |
+
self.conv0 = nn.Conv2d(in_planes, out_planes,
|
44 |
+
3, stride, 1, bias=False)
|
45 |
+
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
46 |
+
self.conv2 = conv_woact(out_planes, out_planes, 3, 1, 1)
|
47 |
+
self.relu1 = nn.PReLU(1)
|
48 |
+
self.relu2 = nn.PReLU(out_planes)
|
49 |
+
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
|
50 |
+
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
y = self.conv0(x)
|
54 |
+
x = self.conv1(x)
|
55 |
+
x = self.conv2(x)
|
56 |
+
w = x.mean(3, True).mean(2, True)
|
57 |
+
w = self.relu1(self.fc1(w))
|
58 |
+
w = torch.sigmoid(self.fc2(w))
|
59 |
+
x = self.relu2(x * w + y)
|
60 |
+
return x
|
61 |
+
|
62 |
+
c = 32
|
63 |
+
|
64 |
+
class ContextNet(nn.Module):
|
65 |
+
def __init__(self):
|
66 |
+
super(ContextNet, self).__init__()
|
67 |
+
self.conv0 = conv(3, c, 3, 2, 1)
|
68 |
+
self.conv1 = ResBlock(c, c)
|
69 |
+
self.conv2 = ResBlock(c, 2*c)
|
70 |
+
self.conv3 = ResBlock(2*c, 4*c)
|
71 |
+
self.conv4 = ResBlock(4*c, 8*c)
|
72 |
+
|
73 |
+
def forward(self, x, flow):
|
74 |
+
x = self.conv0(x)
|
75 |
+
x = self.conv1(x)
|
76 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
|
77 |
+
f1 = warp(x, flow)
|
78 |
+
x = self.conv2(x)
|
79 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
80 |
+
align_corners=False) * 0.5
|
81 |
+
f2 = warp(x, flow)
|
82 |
+
x = self.conv3(x)
|
83 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
84 |
+
align_corners=False) * 0.5
|
85 |
+
f3 = warp(x, flow)
|
86 |
+
x = self.conv4(x)
|
87 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
88 |
+
align_corners=False) * 0.5
|
89 |
+
f4 = warp(x, flow)
|
90 |
+
return [f1, f2, f3, f4]
|
91 |
+
|
92 |
+
|
93 |
+
class FusionNet(nn.Module):
|
94 |
+
def __init__(self):
|
95 |
+
super(FusionNet, self).__init__()
|
96 |
+
self.conv0 = conv(8, c, 3, 2, 1)
|
97 |
+
self.down0 = ResBlock(c, 2*c)
|
98 |
+
self.down1 = ResBlock(4*c, 4*c)
|
99 |
+
self.down2 = ResBlock(8*c, 8*c)
|
100 |
+
self.down3 = ResBlock(16*c, 16*c)
|
101 |
+
self.up0 = deconv(32*c, 8*c)
|
102 |
+
self.up1 = deconv(16*c, 4*c)
|
103 |
+
self.up2 = deconv(8*c, 2*c)
|
104 |
+
self.up3 = deconv(4*c, c)
|
105 |
+
self.conv = nn.Conv2d(c, 16, 3, 1, 1)
|
106 |
+
self.up4 = nn.PixelShuffle(2)
|
107 |
+
|
108 |
+
def forward(self, img0, img1, flow, c0, c1, flow_gt):
|
109 |
+
warped_img0 = warp(img0, flow)
|
110 |
+
warped_img1 = warp(img1, -flow)
|
111 |
+
if flow_gt == None:
|
112 |
+
warped_img0_gt, warped_img1_gt = None, None
|
113 |
+
else:
|
114 |
+
warped_img0_gt = warp(img0, flow_gt[:, :2])
|
115 |
+
warped_img1_gt = warp(img1, flow_gt[:, 2:4])
|
116 |
+
x = self.conv0(torch.cat((warped_img0, warped_img1, flow), 1))
|
117 |
+
s0 = self.down0(x)
|
118 |
+
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
119 |
+
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
120 |
+
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
121 |
+
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
122 |
+
x = self.up1(torch.cat((x, s2), 1))
|
123 |
+
x = self.up2(torch.cat((x, s1), 1))
|
124 |
+
x = self.up3(torch.cat((x, s0), 1))
|
125 |
+
x = self.up4(self.conv(x))
|
126 |
+
return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
127 |
+
|
128 |
+
|
129 |
+
class Model:
|
130 |
+
def __init__(self, local_rank=-1):
|
131 |
+
self.flownet = IFNet()
|
132 |
+
self.contextnet = ContextNet()
|
133 |
+
self.fusionnet = FusionNet()
|
134 |
+
self.device()
|
135 |
+
self.optimG = AdamW(itertools.chain(
|
136 |
+
self.flownet.parameters(),
|
137 |
+
self.contextnet.parameters(),
|
138 |
+
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
|
139 |
+
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
140 |
+
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
141 |
+
self.epe = EPE()
|
142 |
+
self.ter = Ternary()
|
143 |
+
self.sobel = SOBEL()
|
144 |
+
if local_rank != -1:
|
145 |
+
self.flownet = DDP(self.flownet, device_ids=[
|
146 |
+
local_rank], output_device=local_rank)
|
147 |
+
self.contextnet = DDP(self.contextnet, device_ids=[
|
148 |
+
local_rank], output_device=local_rank)
|
149 |
+
self.fusionnet = DDP(self.fusionnet, device_ids=[
|
150 |
+
local_rank], output_device=local_rank)
|
151 |
+
|
152 |
+
def train(self):
|
153 |
+
self.flownet.train()
|
154 |
+
self.contextnet.train()
|
155 |
+
self.fusionnet.train()
|
156 |
+
|
157 |
+
def eval(self):
|
158 |
+
self.flownet.eval()
|
159 |
+
self.contextnet.eval()
|
160 |
+
self.fusionnet.eval()
|
161 |
+
|
162 |
+
def device(self):
|
163 |
+
self.flownet.to(device)
|
164 |
+
self.contextnet.to(device)
|
165 |
+
self.fusionnet.to(device)
|
166 |
+
|
167 |
+
def load_model(self, path, rank):
|
168 |
+
def convert(param):
|
169 |
+
if rank == -1:
|
170 |
+
return {
|
171 |
+
k.replace("module.", ""): v
|
172 |
+
for k, v in param.items()
|
173 |
+
if "module." in k
|
174 |
+
}
|
175 |
+
else:
|
176 |
+
return param
|
177 |
+
if rank <= 0:
|
178 |
+
self.flownet.load_state_dict(
|
179 |
+
convert(torch.load('{}/flownet.pkl'.format(path), map_location=device)))
|
180 |
+
self.contextnet.load_state_dict(
|
181 |
+
convert(torch.load('{}/contextnet.pkl'.format(path), map_location=device)))
|
182 |
+
self.fusionnet.load_state_dict(
|
183 |
+
convert(torch.load('{}/unet.pkl'.format(path), map_location=device)))
|
184 |
+
|
185 |
+
def save_model(self, path, rank):
|
186 |
+
if rank == 0:
|
187 |
+
torch.save(self.flownet.state_dict(), '{}/flownet.pkl'.format(path))
|
188 |
+
torch.save(self.contextnet.state_dict(), '{}/contextnet.pkl'.format(path))
|
189 |
+
torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))
|
190 |
+
|
191 |
+
def predict(self, imgs, flow, training=True, flow_gt=None):
|
192 |
+
img0 = imgs[:, :3]
|
193 |
+
img1 = imgs[:, 3:]
|
194 |
+
c0 = self.contextnet(img0, flow)
|
195 |
+
c1 = self.contextnet(img1, -flow)
|
196 |
+
flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
|
197 |
+
align_corners=False) * 2.0
|
198 |
+
refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
|
199 |
+
img0, img1, flow, c0, c1, flow_gt)
|
200 |
+
res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
|
201 |
+
mask = torch.sigmoid(refine_output[:, 3:4])
|
202 |
+
merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
|
203 |
+
pred = merged_img + res
|
204 |
+
pred = torch.clamp(pred, 0, 1)
|
205 |
+
if training:
|
206 |
+
return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
207 |
+
else:
|
208 |
+
return pred
|
209 |
+
|
210 |
+
def inference(self, img0, img1, scale=1.0):
|
211 |
+
imgs = torch.cat((img0, img1), 1)
|
212 |
+
flow, _ = self.flownet(imgs, scale)
|
213 |
+
return self.predict(imgs, flow, training=False)
|
214 |
+
|
215 |
+
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
216 |
+
for param_group in self.optimG.param_groups:
|
217 |
+
param_group['lr'] = learning_rate
|
218 |
+
if training:
|
219 |
+
self.train()
|
220 |
+
else:
|
221 |
+
self.eval()
|
222 |
+
flow, flow_list = self.flownet(imgs)
|
223 |
+
pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
|
224 |
+
imgs, flow, flow_gt=flow_gt)
|
225 |
+
loss_ter = self.ter(pred, gt).mean()
|
226 |
+
if training:
|
227 |
+
with torch.no_grad():
|
228 |
+
loss_flow = torch.abs(warped_img0_gt - gt).mean()
|
229 |
+
loss_mask = torch.abs(
|
230 |
+
merged_img - gt).sum(1, True).float().detach()
|
231 |
+
loss_mask = F.interpolate(loss_mask, scale_factor=0.5, mode="bilinear",
|
232 |
+
align_corners=False).detach()
|
233 |
+
flow_gt = (F.interpolate(flow_gt, scale_factor=0.5, mode="bilinear",
|
234 |
+
align_corners=False) * 0.5).detach()
|
235 |
+
loss_cons = 0
|
236 |
+
for i in range(3):
|
237 |
+
loss_cons += self.epe(flow_list[i], flow_gt[:, :2], 1)
|
238 |
+
loss_cons += self.epe(-flow_list[i], flow_gt[:, 2:4], 1)
|
239 |
+
loss_cons = loss_cons.mean() * 0.01
|
240 |
+
else:
|
241 |
+
loss_cons = torch.tensor([0])
|
242 |
+
loss_flow = torch.abs(warped_img0 - gt).mean()
|
243 |
+
loss_mask = 1
|
244 |
+
loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
|
245 |
+
if training:
|
246 |
+
self.optimG.zero_grad()
|
247 |
+
loss_G = loss_l1 + loss_cons + loss_ter
|
248 |
+
loss_G.backward()
|
249 |
+
self.optimG.step()
|
250 |
+
return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == '__main__':
|
254 |
+
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
255 |
+
img1 = torch.tensor(np.random.normal(
|
256 |
+
0, 1, (3, 3, 256, 256))).float().to(device)
|
257 |
+
imgs = torch.cat((img0, img1), 1)
|
258 |
+
model = Model()
|
259 |
+
model.eval()
|
260 |
+
print(model.inference(imgs).shape)
|
ECCV2022-RIFE-main/model/oldmodel/RIFE_HDv2.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from torch.optim import AdamW
|
5 |
+
import torch.optim as optim
|
6 |
+
import itertools
|
7 |
+
from model.warplayer import warp
|
8 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
9 |
+
from model.oldmodel.IFNet_HDv2 import *
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from model.loss import *
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
|
16 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
17 |
+
return nn.Sequential(
|
18 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
19 |
+
padding=padding, dilation=dilation, bias=True),
|
20 |
+
nn.PReLU(out_planes)
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
25 |
+
return nn.Sequential(
|
26 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
|
27 |
+
kernel_size=4, stride=2, padding=1, bias=True),
|
28 |
+
nn.PReLU(out_planes)
|
29 |
+
)
|
30 |
+
|
31 |
+
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
32 |
+
return nn.Sequential(
|
33 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
34 |
+
padding=padding, dilation=dilation, bias=True),
|
35 |
+
)
|
36 |
+
|
37 |
+
class Conv2(nn.Module):
|
38 |
+
def __init__(self, in_planes, out_planes, stride=2):
|
39 |
+
super(Conv2, self).__init__()
|
40 |
+
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
41 |
+
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.conv1(x)
|
45 |
+
x = self.conv2(x)
|
46 |
+
return x
|
47 |
+
|
48 |
+
c = 32
|
49 |
+
|
50 |
+
class ContextNet(nn.Module):
|
51 |
+
def __init__(self):
|
52 |
+
super(ContextNet, self).__init__()
|
53 |
+
self.conv0 = Conv2(3, c)
|
54 |
+
self.conv1 = Conv2(c, c)
|
55 |
+
self.conv2 = Conv2(c, 2*c)
|
56 |
+
self.conv3 = Conv2(2*c, 4*c)
|
57 |
+
self.conv4 = Conv2(4*c, 8*c)
|
58 |
+
|
59 |
+
def forward(self, x, flow):
|
60 |
+
x = self.conv0(x)
|
61 |
+
x = self.conv1(x)
|
62 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
|
63 |
+
f1 = warp(x, flow)
|
64 |
+
x = self.conv2(x)
|
65 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
66 |
+
align_corners=False) * 0.5
|
67 |
+
f2 = warp(x, flow)
|
68 |
+
x = self.conv3(x)
|
69 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
70 |
+
align_corners=False) * 0.5
|
71 |
+
f3 = warp(x, flow)
|
72 |
+
x = self.conv4(x)
|
73 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
74 |
+
align_corners=False) * 0.5
|
75 |
+
f4 = warp(x, flow)
|
76 |
+
return [f1, f2, f3, f4]
|
77 |
+
|
78 |
+
|
79 |
+
class FusionNet(nn.Module):
|
80 |
+
def __init__(self):
|
81 |
+
super(FusionNet, self).__init__()
|
82 |
+
self.conv0 = Conv2(10, c)
|
83 |
+
self.down0 = Conv2(c, 2*c)
|
84 |
+
self.down1 = Conv2(4*c, 4*c)
|
85 |
+
self.down2 = Conv2(8*c, 8*c)
|
86 |
+
self.down3 = Conv2(16*c, 16*c)
|
87 |
+
self.up0 = deconv(32*c, 8*c)
|
88 |
+
self.up1 = deconv(16*c, 4*c)
|
89 |
+
self.up2 = deconv(8*c, 2*c)
|
90 |
+
self.up3 = deconv(4*c, c)
|
91 |
+
self.conv = nn.ConvTranspose2d(c, 4, 4, 2, 1)
|
92 |
+
|
93 |
+
def forward(self, img0, img1, flow, c0, c1, flow_gt):
|
94 |
+
warped_img0 = warp(img0, flow[:, :2])
|
95 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
96 |
+
if flow_gt == None:
|
97 |
+
warped_img0_gt, warped_img1_gt = None, None
|
98 |
+
else:
|
99 |
+
warped_img0_gt = warp(img0, flow_gt[:, :2])
|
100 |
+
warped_img1_gt = warp(img1, flow_gt[:, 2:4])
|
101 |
+
x = self.conv0(torch.cat((warped_img0, warped_img1, flow), 1))
|
102 |
+
s0 = self.down0(x)
|
103 |
+
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
104 |
+
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
105 |
+
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
106 |
+
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
107 |
+
x = self.up1(torch.cat((x, s2), 1))
|
108 |
+
x = self.up2(torch.cat((x, s1), 1))
|
109 |
+
x = self.up3(torch.cat((x, s0), 1))
|
110 |
+
x = self.conv(x)
|
111 |
+
return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
112 |
+
|
113 |
+
|
114 |
+
class Model:
|
115 |
+
def __init__(self, local_rank=-1):
|
116 |
+
self.flownet = IFNet()
|
117 |
+
self.contextnet = ContextNet()
|
118 |
+
self.fusionnet = FusionNet()
|
119 |
+
self.device()
|
120 |
+
self.optimG = AdamW(itertools.chain(
|
121 |
+
self.flownet.parameters(),
|
122 |
+
self.contextnet.parameters(),
|
123 |
+
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
|
124 |
+
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
125 |
+
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
126 |
+
self.epe = EPE()
|
127 |
+
self.ter = Ternary()
|
128 |
+
self.sobel = SOBEL()
|
129 |
+
if local_rank != -1:
|
130 |
+
self.flownet = DDP(self.flownet, device_ids=[
|
131 |
+
local_rank], output_device=local_rank)
|
132 |
+
self.contextnet = DDP(self.contextnet, device_ids=[
|
133 |
+
local_rank], output_device=local_rank)
|
134 |
+
self.fusionnet = DDP(self.fusionnet, device_ids=[
|
135 |
+
local_rank], output_device=local_rank)
|
136 |
+
|
137 |
+
def train(self):
|
138 |
+
self.flownet.train()
|
139 |
+
self.contextnet.train()
|
140 |
+
self.fusionnet.train()
|
141 |
+
|
142 |
+
def eval(self):
|
143 |
+
self.flownet.eval()
|
144 |
+
self.contextnet.eval()
|
145 |
+
self.fusionnet.eval()
|
146 |
+
|
147 |
+
def device(self):
|
148 |
+
self.flownet.to(device)
|
149 |
+
self.contextnet.to(device)
|
150 |
+
self.fusionnet.to(device)
|
151 |
+
|
152 |
+
def load_model(self, path, rank):
|
153 |
+
def convert(param):
|
154 |
+
if rank == -1:
|
155 |
+
return {
|
156 |
+
k.replace("module.", ""): v
|
157 |
+
for k, v in param.items()
|
158 |
+
if "module." in k
|
159 |
+
}
|
160 |
+
else:
|
161 |
+
return param
|
162 |
+
if rank <= 0:
|
163 |
+
self.flownet.load_state_dict(
|
164 |
+
convert(torch.load('{}/flownet.pkl'.format(path), map_location=device)))
|
165 |
+
self.contextnet.load_state_dict(
|
166 |
+
convert(torch.load('{}/contextnet.pkl'.format(path), map_location=device)))
|
167 |
+
self.fusionnet.load_state_dict(
|
168 |
+
convert(torch.load('{}/unet.pkl'.format(path), map_location=device)))
|
169 |
+
|
170 |
+
def save_model(self, path, rank):
|
171 |
+
if rank == 0:
|
172 |
+
torch.save(self.flownet.state_dict(), '{}/flownet.pkl'.format(path))
|
173 |
+
torch.save(self.contextnet.state_dict(), '{}/contextnet.pkl'.format(path))
|
174 |
+
torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))
|
175 |
+
|
176 |
+
def predict(self, imgs, flow, training=True, flow_gt=None):
|
177 |
+
img0 = imgs[:, :3]
|
178 |
+
img1 = imgs[:, 3:]
|
179 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
180 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
181 |
+
flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
|
182 |
+
align_corners=False) * 2.0
|
183 |
+
refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
|
184 |
+
img0, img1, flow, c0, c1, flow_gt)
|
185 |
+
res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
|
186 |
+
mask = torch.sigmoid(refine_output[:, 3:4])
|
187 |
+
merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
|
188 |
+
pred = merged_img + res
|
189 |
+
pred = torch.clamp(pred, 0, 1)
|
190 |
+
if training:
|
191 |
+
return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
192 |
+
else:
|
193 |
+
return pred
|
194 |
+
|
195 |
+
def inference(self, img0, img1, scale=1.0):
|
196 |
+
imgs = torch.cat((img0, img1), 1)
|
197 |
+
flow, _ = self.flownet(imgs, scale)
|
198 |
+
return self.predict(imgs, flow, training=False)
|
199 |
+
|
200 |
+
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
201 |
+
for param_group in self.optimG.param_groups:
|
202 |
+
param_group['lr'] = learning_rate
|
203 |
+
if training:
|
204 |
+
self.train()
|
205 |
+
else:
|
206 |
+
self.eval()
|
207 |
+
flow, flow_list = self.flownet(imgs)
|
208 |
+
pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
|
209 |
+
imgs, flow, flow_gt=flow_gt)
|
210 |
+
loss_ter = self.ter(pred, gt).mean()
|
211 |
+
if training:
|
212 |
+
with torch.no_grad():
|
213 |
+
loss_flow = torch.abs(warped_img0_gt - gt).mean()
|
214 |
+
loss_mask = torch.abs(
|
215 |
+
merged_img - gt).sum(1, True).float().detach()
|
216 |
+
loss_mask = F.interpolate(loss_mask, scale_factor=0.5, mode="bilinear",
|
217 |
+
align_corners=False).detach()
|
218 |
+
flow_gt = (F.interpolate(flow_gt, scale_factor=0.5, mode="bilinear",
|
219 |
+
align_corners=False) * 0.5).detach()
|
220 |
+
loss_cons = 0
|
221 |
+
for i in range(4):
|
222 |
+
loss_cons += self.epe(flow_list[i][:, :2], flow_gt[:, :2], 1)
|
223 |
+
loss_cons += self.epe(flow_list[i][:, 2:4], flow_gt[:, 2:4], 1)
|
224 |
+
loss_cons = loss_cons.mean() * 0.01
|
225 |
+
else:
|
226 |
+
loss_cons = torch.tensor([0])
|
227 |
+
loss_flow = torch.abs(warped_img0 - gt).mean()
|
228 |
+
loss_mask = 1
|
229 |
+
loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
|
230 |
+
if training:
|
231 |
+
self.optimG.zero_grad()
|
232 |
+
loss_G = loss_l1 + loss_cons + loss_ter
|
233 |
+
loss_G.backward()
|
234 |
+
self.optimG.step()
|
235 |
+
return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask
|
236 |
+
|
237 |
+
|
238 |
+
if __name__ == '__main__':
|
239 |
+
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
240 |
+
img1 = torch.tensor(np.random.normal(
|
241 |
+
0, 1, (3, 3, 256, 256))).float().to(device)
|
242 |
+
imgs = torch.cat((img0, img1), 1)
|
243 |
+
model = Model()
|
244 |
+
model.eval()
|
245 |
+
print(model.inference(imgs).shape)
|
ECCV2022-RIFE-main/model/pytorch_msssim/__init__.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from math import exp
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
def gaussian(window_size, sigma):
|
9 |
+
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
10 |
+
return gauss/gauss.sum()
|
11 |
+
|
12 |
+
|
13 |
+
def create_window(window_size, channel=1):
|
14 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
15 |
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device)
|
16 |
+
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
17 |
+
return window
|
18 |
+
|
19 |
+
def create_window_3d(window_size, channel=1):
|
20 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
21 |
+
_2D_window = _1D_window.mm(_1D_window.t())
|
22 |
+
_3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t())
|
23 |
+
window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device)
|
24 |
+
return window
|
25 |
+
|
26 |
+
|
27 |
+
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
28 |
+
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
|
29 |
+
if val_range is None:
|
30 |
+
if torch.max(img1) > 128:
|
31 |
+
max_val = 255
|
32 |
+
else:
|
33 |
+
max_val = 1
|
34 |
+
|
35 |
+
if torch.min(img1) < -0.5:
|
36 |
+
min_val = -1
|
37 |
+
else:
|
38 |
+
min_val = 0
|
39 |
+
L = max_val - min_val
|
40 |
+
else:
|
41 |
+
L = val_range
|
42 |
+
|
43 |
+
padd = 0
|
44 |
+
(_, channel, height, width) = img1.size()
|
45 |
+
if window is None:
|
46 |
+
real_size = min(window_size, height, width)
|
47 |
+
window = create_window(real_size, channel=channel).to(img1.device)
|
48 |
+
|
49 |
+
# mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
|
50 |
+
# mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
|
51 |
+
mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
|
52 |
+
mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
|
53 |
+
|
54 |
+
mu1_sq = mu1.pow(2)
|
55 |
+
mu2_sq = mu2.pow(2)
|
56 |
+
mu1_mu2 = mu1 * mu2
|
57 |
+
|
58 |
+
sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_sq
|
59 |
+
sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu2_sq
|
60 |
+
sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_mu2
|
61 |
+
|
62 |
+
C1 = (0.01 * L) ** 2
|
63 |
+
C2 = (0.03 * L) ** 2
|
64 |
+
|
65 |
+
v1 = 2.0 * sigma12 + C2
|
66 |
+
v2 = sigma1_sq + sigma2_sq + C2
|
67 |
+
cs = torch.mean(v1 / v2) # contrast sensitivity
|
68 |
+
|
69 |
+
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
70 |
+
|
71 |
+
if size_average:
|
72 |
+
ret = ssim_map.mean()
|
73 |
+
else:
|
74 |
+
ret = ssim_map.mean(1).mean(1).mean(1)
|
75 |
+
|
76 |
+
if full:
|
77 |
+
return ret, cs
|
78 |
+
return ret
|
79 |
+
|
80 |
+
|
81 |
+
def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
82 |
+
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
|
83 |
+
if val_range is None:
|
84 |
+
if torch.max(img1) > 128:
|
85 |
+
max_val = 255
|
86 |
+
else:
|
87 |
+
max_val = 1
|
88 |
+
|
89 |
+
if torch.min(img1) < -0.5:
|
90 |
+
min_val = -1
|
91 |
+
else:
|
92 |
+
min_val = 0
|
93 |
+
L = max_val - min_val
|
94 |
+
else:
|
95 |
+
L = val_range
|
96 |
+
|
97 |
+
padd = 0
|
98 |
+
(_, _, height, width) = img1.size()
|
99 |
+
if window is None:
|
100 |
+
real_size = min(window_size, height, width)
|
101 |
+
window = create_window_3d(real_size, channel=1).to(img1.device)
|
102 |
+
# Channel is set to 1 since we consider color images as volumetric images
|
103 |
+
|
104 |
+
img1 = img1.unsqueeze(1)
|
105 |
+
img2 = img2.unsqueeze(1)
|
106 |
+
|
107 |
+
mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
|
108 |
+
mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
|
109 |
+
|
110 |
+
mu1_sq = mu1.pow(2)
|
111 |
+
mu2_sq = mu2.pow(2)
|
112 |
+
mu1_mu2 = mu1 * mu2
|
113 |
+
|
114 |
+
sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_sq
|
115 |
+
sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu2_sq
|
116 |
+
sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_mu2
|
117 |
+
|
118 |
+
C1 = (0.01 * L) ** 2
|
119 |
+
C2 = (0.03 * L) ** 2
|
120 |
+
|
121 |
+
v1 = 2.0 * sigma12 + C2
|
122 |
+
v2 = sigma1_sq + sigma2_sq + C2
|
123 |
+
cs = torch.mean(v1 / v2) # contrast sensitivity
|
124 |
+
|
125 |
+
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
126 |
+
|
127 |
+
if size_average:
|
128 |
+
ret = ssim_map.mean()
|
129 |
+
else:
|
130 |
+
ret = ssim_map.mean(1).mean(1).mean(1)
|
131 |
+
|
132 |
+
if full:
|
133 |
+
return ret, cs
|
134 |
+
return ret
|
135 |
+
|
136 |
+
|
137 |
+
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False):
|
138 |
+
device = img1.device
|
139 |
+
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
|
140 |
+
levels = weights.size()[0]
|
141 |
+
mssim = []
|
142 |
+
mcs = []
|
143 |
+
for _ in range(levels):
|
144 |
+
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
|
145 |
+
mssim.append(sim)
|
146 |
+
mcs.append(cs)
|
147 |
+
|
148 |
+
img1 = F.avg_pool2d(img1, (2, 2))
|
149 |
+
img2 = F.avg_pool2d(img2, (2, 2))
|
150 |
+
|
151 |
+
mssim = torch.stack(mssim)
|
152 |
+
mcs = torch.stack(mcs)
|
153 |
+
|
154 |
+
# Normalize (to avoid NaNs during training unstable models, not compliant with original definition)
|
155 |
+
if normalize:
|
156 |
+
mssim = (mssim + 1) / 2
|
157 |
+
mcs = (mcs + 1) / 2
|
158 |
+
|
159 |
+
pow1 = mcs ** weights
|
160 |
+
pow2 = mssim ** weights
|
161 |
+
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
|
162 |
+
output = torch.prod(pow1[:-1] * pow2[-1])
|
163 |
+
return output
|
164 |
+
|
165 |
+
|
166 |
+
# Classes to re-use window
|
167 |
+
class SSIM(torch.nn.Module):
|
168 |
+
def __init__(self, window_size=11, size_average=True, val_range=None):
|
169 |
+
super(SSIM, self).__init__()
|
170 |
+
self.window_size = window_size
|
171 |
+
self.size_average = size_average
|
172 |
+
self.val_range = val_range
|
173 |
+
|
174 |
+
# Assume 3 channel for SSIM
|
175 |
+
self.channel = 3
|
176 |
+
self.window = create_window(window_size, channel=self.channel)
|
177 |
+
|
178 |
+
def forward(self, img1, img2):
|
179 |
+
(_, channel, _, _) = img1.size()
|
180 |
+
|
181 |
+
if channel == self.channel and self.window.dtype == img1.dtype:
|
182 |
+
window = self.window
|
183 |
+
else:
|
184 |
+
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
|
185 |
+
self.window = window
|
186 |
+
self.channel = channel
|
187 |
+
|
188 |
+
_ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
|
189 |
+
dssim = (1 - _ssim) / 2
|
190 |
+
return dssim
|
191 |
+
|
192 |
+
class MSSSIM(torch.nn.Module):
|
193 |
+
def __init__(self, window_size=11, size_average=True, channel=3):
|
194 |
+
super(MSSSIM, self).__init__()
|
195 |
+
self.window_size = window_size
|
196 |
+
self.size_average = size_average
|
197 |
+
self.channel = channel
|
198 |
+
|
199 |
+
def forward(self, img1, img2):
|
200 |
+
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
|
ECCV2022-RIFE-main/model/refine.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import torch.optim as optim
|
5 |
+
import itertools
|
6 |
+
from model.warplayer import warp
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
12 |
+
return nn.Sequential(
|
13 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
14 |
+
padding=padding, dilation=dilation, bias=True),
|
15 |
+
nn.PReLU(out_planes)
|
16 |
+
)
|
17 |
+
|
18 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
19 |
+
return nn.Sequential(
|
20 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True),
|
21 |
+
nn.PReLU(out_planes)
|
22 |
+
)
|
23 |
+
|
24 |
+
class Conv2(nn.Module):
|
25 |
+
def __init__(self, in_planes, out_planes, stride=2):
|
26 |
+
super(Conv2, self).__init__()
|
27 |
+
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
28 |
+
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.conv1(x)
|
32 |
+
x = self.conv2(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
c = 16
|
36 |
+
class Contextnet(nn.Module):
|
37 |
+
def __init__(self):
|
38 |
+
super(Contextnet, self).__init__()
|
39 |
+
self.conv1 = Conv2(3, c)
|
40 |
+
self.conv2 = Conv2(c, 2*c)
|
41 |
+
self.conv3 = Conv2(2*c, 4*c)
|
42 |
+
self.conv4 = Conv2(4*c, 8*c)
|
43 |
+
|
44 |
+
def forward(self, x, flow):
|
45 |
+
x = self.conv1(x)
|
46 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
47 |
+
f1 = warp(x, flow)
|
48 |
+
x = self.conv2(x)
|
49 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
50 |
+
f2 = warp(x, flow)
|
51 |
+
x = self.conv3(x)
|
52 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
53 |
+
f3 = warp(x, flow)
|
54 |
+
x = self.conv4(x)
|
55 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
56 |
+
f4 = warp(x, flow)
|
57 |
+
return [f1, f2, f3, f4]
|
58 |
+
|
59 |
+
class Unet(nn.Module):
|
60 |
+
def __init__(self):
|
61 |
+
super(Unet, self).__init__()
|
62 |
+
self.down0 = Conv2(17, 2*c)
|
63 |
+
self.down1 = Conv2(4*c, 4*c)
|
64 |
+
self.down2 = Conv2(8*c, 8*c)
|
65 |
+
self.down3 = Conv2(16*c, 16*c)
|
66 |
+
self.up0 = deconv(32*c, 8*c)
|
67 |
+
self.up1 = deconv(16*c, 4*c)
|
68 |
+
self.up2 = deconv(8*c, 2*c)
|
69 |
+
self.up3 = deconv(4*c, c)
|
70 |
+
self.conv = nn.Conv2d(c, 3, 3, 1, 1)
|
71 |
+
|
72 |
+
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
|
73 |
+
s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
|
74 |
+
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
75 |
+
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
76 |
+
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
77 |
+
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
78 |
+
x = self.up1(torch.cat((x, s2), 1))
|
79 |
+
x = self.up2(torch.cat((x, s1), 1))
|
80 |
+
x = self.up3(torch.cat((x, s0), 1))
|
81 |
+
x = self.conv(x)
|
82 |
+
return torch.sigmoid(x)
|
ECCV2022-RIFE-main/model/refine_2R.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import torch.optim as optim
|
5 |
+
import itertools
|
6 |
+
from model.warplayer import warp
|
7 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
13 |
+
return nn.Sequential(
|
14 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
15 |
+
padding=padding, dilation=dilation, bias=True),
|
16 |
+
nn.PReLU(out_planes)
|
17 |
+
)
|
18 |
+
|
19 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
20 |
+
return nn.Sequential(
|
21 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True),
|
22 |
+
nn.PReLU(out_planes)
|
23 |
+
)
|
24 |
+
|
25 |
+
class Conv2(nn.Module):
|
26 |
+
def __init__(self, in_planes, out_planes, stride=2):
|
27 |
+
super(Conv2, self).__init__()
|
28 |
+
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
29 |
+
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = self.conv1(x)
|
33 |
+
x = self.conv2(x)
|
34 |
+
return x
|
35 |
+
|
36 |
+
c = 16
|
37 |
+
class Contextnet(nn.Module):
|
38 |
+
def __init__(self):
|
39 |
+
super(Contextnet, self).__init__()
|
40 |
+
self.conv1 = Conv2(3, c, 1)
|
41 |
+
self.conv2 = Conv2(c, 2*c)
|
42 |
+
self.conv3 = Conv2(2*c, 4*c)
|
43 |
+
self.conv4 = Conv2(4*c, 8*c)
|
44 |
+
|
45 |
+
def forward(self, x, flow):
|
46 |
+
x = self.conv1(x)
|
47 |
+
# flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
48 |
+
f1 = warp(x, flow)
|
49 |
+
x = self.conv2(x)
|
50 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
51 |
+
f2 = warp(x, flow)
|
52 |
+
x = self.conv3(x)
|
53 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
54 |
+
f3 = warp(x, flow)
|
55 |
+
x = self.conv4(x)
|
56 |
+
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
57 |
+
f4 = warp(x, flow)
|
58 |
+
return [f1, f2, f3, f4]
|
59 |
+
|
60 |
+
class Unet(nn.Module):
|
61 |
+
def __init__(self):
|
62 |
+
super(Unet, self).__init__()
|
63 |
+
self.down0 = Conv2(17, 2*c, 1)
|
64 |
+
self.down1 = Conv2(4*c, 4*c)
|
65 |
+
self.down2 = Conv2(8*c, 8*c)
|
66 |
+
self.down3 = Conv2(16*c, 16*c)
|
67 |
+
self.up0 = deconv(32*c, 8*c)
|
68 |
+
self.up1 = deconv(16*c, 4*c)
|
69 |
+
self.up2 = deconv(8*c, 2*c)
|
70 |
+
self.up3 = deconv(4*c, c)
|
71 |
+
self.conv = nn.Conv2d(c, 3, 3, 2, 1)
|
72 |
+
|
73 |
+
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
|
74 |
+
s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
|
75 |
+
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
76 |
+
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
77 |
+
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
78 |
+
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
79 |
+
x = self.up1(torch.cat((x, s2), 1))
|
80 |
+
x = self.up2(torch.cat((x, s1), 1))
|
81 |
+
x = self.up3(torch.cat((x, s0), 1))
|
82 |
+
x = self.conv(x)
|
83 |
+
return torch.sigmoid(x)
|
ECCV2022-RIFE-main/model/warplayer.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
5 |
+
backwarp_tenGrid = {}
|
6 |
+
|
7 |
+
|
8 |
+
def warp(tenInput, tenFlow):
|
9 |
+
k = (str(tenFlow.device), str(tenFlow.size()))
|
10 |
+
if k not in backwarp_tenGrid:
|
11 |
+
tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view(
|
12 |
+
1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
|
13 |
+
tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view(
|
14 |
+
1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
|
15 |
+
backwarp_tenGrid[k] = torch.cat(
|
16 |
+
[tenHorizontal, tenVertical], 1).to(device)
|
17 |
+
|
18 |
+
tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
|
19 |
+
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1)
|
20 |
+
|
21 |
+
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
|
22 |
+
return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True)
|
ECCV2022-RIFE-main/requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy>=1.16, <=1.23.5
|
2 |
+
tqdm>=4.35.0
|
3 |
+
sk-video>=1.1.10
|
4 |
+
torch>=1.6.0
|
5 |
+
opencv-python>=4.1.2
|
6 |
+
moviepy>=1.0.3
|
7 |
+
torchvision>=0.7.0
|
ECCV2022-RIFE-main/train.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
import argparse
|
10 |
+
|
11 |
+
from model.RIFE import Model
|
12 |
+
from dataset import *
|
13 |
+
from torch.utils.data import DataLoader, Dataset
|
14 |
+
from torch.utils.tensorboard import SummaryWriter
|
15 |
+
from torch.utils.data.distributed import DistributedSampler
|
16 |
+
|
17 |
+
device = torch.device("cuda")
|
18 |
+
|
19 |
+
log_path = 'train_log'
|
20 |
+
|
21 |
+
def get_learning_rate(step):
|
22 |
+
if step < 2000:
|
23 |
+
mul = step / 2000.
|
24 |
+
return 3e-4 * mul
|
25 |
+
else:
|
26 |
+
mul = np.cos((step - 2000) / (args.epoch * args.step_per_epoch - 2000.) * math.pi) * 0.5 + 0.5
|
27 |
+
return (3e-4 - 3e-6) * mul + 3e-6
|
28 |
+
|
29 |
+
def flow2rgb(flow_map_np):
|
30 |
+
h, w, _ = flow_map_np.shape
|
31 |
+
rgb_map = np.ones((h, w, 3)).astype(np.float32)
|
32 |
+
normalized_flow_map = flow_map_np / (np.abs(flow_map_np).max())
|
33 |
+
|
34 |
+
rgb_map[:, :, 0] += normalized_flow_map[:, :, 0]
|
35 |
+
rgb_map[:, :, 1] -= 0.5 * (normalized_flow_map[:, :, 0] + normalized_flow_map[:, :, 1])
|
36 |
+
rgb_map[:, :, 2] += normalized_flow_map[:, :, 1]
|
37 |
+
return rgb_map.clip(0, 1)
|
38 |
+
|
39 |
+
def train(model, local_rank):
|
40 |
+
if local_rank == 0:
|
41 |
+
writer = SummaryWriter('train')
|
42 |
+
writer_val = SummaryWriter('validate')
|
43 |
+
else:
|
44 |
+
writer = None
|
45 |
+
writer_val = None
|
46 |
+
step = 0
|
47 |
+
nr_eval = 0
|
48 |
+
dataset = VimeoDataset('train')
|
49 |
+
sampler = DistributedSampler(dataset)
|
50 |
+
train_data = DataLoader(dataset, batch_size=args.batch_size, num_workers=8, pin_memory=True, drop_last=True, sampler=sampler)
|
51 |
+
args.step_per_epoch = train_data.__len__()
|
52 |
+
dataset_val = VimeoDataset('validation')
|
53 |
+
val_data = DataLoader(dataset_val, batch_size=16, pin_memory=True, num_workers=8)
|
54 |
+
print('training...')
|
55 |
+
time_stamp = time.time()
|
56 |
+
for epoch in range(args.epoch):
|
57 |
+
sampler.set_epoch(epoch)
|
58 |
+
for i, data in enumerate(train_data):
|
59 |
+
data_time_interval = time.time() - time_stamp
|
60 |
+
time_stamp = time.time()
|
61 |
+
data_gpu, timestep = data
|
62 |
+
data_gpu = data_gpu.to(device, non_blocking=True) / 255.
|
63 |
+
timestep = timestep.to(device, non_blocking=True)
|
64 |
+
imgs = data_gpu[:, :6]
|
65 |
+
gt = data_gpu[:, 6:9]
|
66 |
+
learning_rate = get_learning_rate(step) * args.world_size / 4
|
67 |
+
pred, info = model.update(imgs, gt, learning_rate, training=True) # pass timestep if you are training RIFEm
|
68 |
+
train_time_interval = time.time() - time_stamp
|
69 |
+
time_stamp = time.time()
|
70 |
+
if step % 200 == 1 and local_rank == 0:
|
71 |
+
writer.add_scalar('learning_rate', learning_rate, step)
|
72 |
+
writer.add_scalar('loss/l1', info['loss_l1'], step)
|
73 |
+
writer.add_scalar('loss/tea', info['loss_tea'], step)
|
74 |
+
writer.add_scalar('loss/distill', info['loss_distill'], step)
|
75 |
+
if step % 1000 == 1 and local_rank == 0:
|
76 |
+
gt = (gt.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
77 |
+
mask = (torch.cat((info['mask'], info['mask_tea']), 3).permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
78 |
+
pred = (pred.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
79 |
+
merged_img = (info['merged_tea'].permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
80 |
+
flow0 = info['flow'].permute(0, 2, 3, 1).detach().cpu().numpy()
|
81 |
+
flow1 = info['flow_tea'].permute(0, 2, 3, 1).detach().cpu().numpy()
|
82 |
+
for i in range(5):
|
83 |
+
imgs = np.concatenate((merged_img[i], pred[i], gt[i]), 1)[:, :, ::-1]
|
84 |
+
writer.add_image(str(i) + '/img', imgs, step, dataformats='HWC')
|
85 |
+
writer.add_image(str(i) + '/flow', np.concatenate((flow2rgb(flow0[i]), flow2rgb(flow1[i])), 1), step, dataformats='HWC')
|
86 |
+
writer.add_image(str(i) + '/mask', mask[i], step, dataformats='HWC')
|
87 |
+
writer.flush()
|
88 |
+
if local_rank == 0:
|
89 |
+
print('epoch:{} {}/{} time:{:.2f}+{:.2f} loss_l1:{:.4e}'.format(epoch, i, args.step_per_epoch, data_time_interval, train_time_interval, info['loss_l1']))
|
90 |
+
step += 1
|
91 |
+
nr_eval += 1
|
92 |
+
if nr_eval % 5 == 0:
|
93 |
+
evaluate(model, val_data, step, local_rank, writer_val)
|
94 |
+
model.save_model(log_path, local_rank)
|
95 |
+
dist.barrier()
|
96 |
+
|
97 |
+
def evaluate(model, val_data, nr_eval, local_rank, writer_val):
|
98 |
+
loss_l1_list = []
|
99 |
+
loss_distill_list = []
|
100 |
+
loss_tea_list = []
|
101 |
+
psnr_list = []
|
102 |
+
psnr_list_teacher = []
|
103 |
+
time_stamp = time.time()
|
104 |
+
for i, data in enumerate(val_data):
|
105 |
+
data_gpu, timestep = data
|
106 |
+
data_gpu = data_gpu.to(device, non_blocking=True) / 255.
|
107 |
+
imgs = data_gpu[:, :6]
|
108 |
+
gt = data_gpu[:, 6:9]
|
109 |
+
with torch.no_grad():
|
110 |
+
pred, info = model.update(imgs, gt, training=False)
|
111 |
+
merged_img = info['merged_tea']
|
112 |
+
loss_l1_list.append(info['loss_l1'].cpu().numpy())
|
113 |
+
loss_tea_list.append(info['loss_tea'].cpu().numpy())
|
114 |
+
loss_distill_list.append(info['loss_distill'].cpu().numpy())
|
115 |
+
for j in range(gt.shape[0]):
|
116 |
+
psnr = -10 * math.log10(torch.mean((gt[j] - pred[j]) * (gt[j] - pred[j])).cpu().data)
|
117 |
+
psnr_list.append(psnr)
|
118 |
+
psnr = -10 * math.log10(torch.mean((merged_img[j] - gt[j]) * (merged_img[j] - gt[j])).cpu().data)
|
119 |
+
psnr_list_teacher.append(psnr)
|
120 |
+
gt = (gt.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
|
121 |
+
pred = (pred.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
|
122 |
+
merged_img = (merged_img.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
|
123 |
+
flow0 = info['flow'].permute(0, 2, 3, 1).cpu().numpy()
|
124 |
+
flow1 = info['flow_tea'].permute(0, 2, 3, 1).cpu().numpy()
|
125 |
+
if i == 0 and local_rank == 0:
|
126 |
+
for j in range(10):
|
127 |
+
imgs = np.concatenate((merged_img[j], pred[j], gt[j]), 1)[:, :, ::-1]
|
128 |
+
writer_val.add_image(str(j) + '/img', imgs.copy(), nr_eval, dataformats='HWC')
|
129 |
+
writer_val.add_image(str(j) + '/flow', flow2rgb(flow0[j][:, :, ::-1]), nr_eval, dataformats='HWC')
|
130 |
+
|
131 |
+
eval_time_interval = time.time() - time_stamp
|
132 |
+
|
133 |
+
if local_rank != 0:
|
134 |
+
return
|
135 |
+
writer_val.add_scalar('psnr', np.array(psnr_list).mean(), nr_eval)
|
136 |
+
writer_val.add_scalar('psnr_teacher', np.array(psnr_list_teacher).mean(), nr_eval)
|
137 |
+
|
138 |
+
if __name__ == "__main__":
|
139 |
+
parser = argparse.ArgumentParser()
|
140 |
+
parser.add_argument('--epoch', default=300, type=int)
|
141 |
+
parser.add_argument('--batch_size', default=16, type=int, help='minibatch size')
|
142 |
+
parser.add_argument('--local_rank', default=0, type=int, help='local rank')
|
143 |
+
parser.add_argument('--world_size', default=4, type=int, help='world size')
|
144 |
+
args = parser.parse_args()
|
145 |
+
torch.distributed.init_process_group(backend="nccl", world_size=args.world_size)
|
146 |
+
torch.cuda.set_device(args.local_rank)
|
147 |
+
seed = 1234
|
148 |
+
random.seed(seed)
|
149 |
+
np.random.seed(seed)
|
150 |
+
torch.manual_seed(seed)
|
151 |
+
torch.cuda.manual_seed_all(seed)
|
152 |
+
torch.backends.cudnn.benchmark = True
|
153 |
+
model = Model(args.local_rank)
|
154 |
+
train(model, args.local_rank)
|
155 |
+
|