Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from model.warplayer import warp | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | |
return nn.Sequential( | |
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, bias=False), | |
nn.BatchNorm2d(out_planes), | |
) | |
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): | |
return nn.Sequential( | |
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, bias=False), | |
nn.BatchNorm2d(out_planes), | |
nn.PReLU(out_planes) | |
) | |
class ResBlock(nn.Module): | |
def __init__(self, in_planes, out_planes, stride=1): | |
super(ResBlock, self).__init__() | |
if in_planes == out_planes and stride == 1: | |
self.conv0 = nn.Identity() | |
else: | |
self.conv0 = nn.Conv2d(in_planes, out_planes, | |
3, stride, 1, bias=False) | |
self.conv1 = conv(in_planes, out_planes, 5, stride, 2) | |
self.conv2 = conv_wo_act(out_planes, out_planes, 3, 1, 1) | |
self.relu1 = nn.PReLU(1) | |
self.relu2 = nn.PReLU(out_planes) | |
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False) | |
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False) | |
def forward(self, x): | |
y = self.conv0(x) | |
x = self.conv1(x) | |
x = self.conv2(x) | |
w = x.mean(3, True).mean(2, True) | |
w = self.relu1(self.fc1(w)) | |
w = torch.sigmoid(self.fc2(w)) | |
x = self.relu2(x * w + y) | |
return x | |
class IFBlock(nn.Module): | |
def __init__(self, in_planes, scale=1, c=64): | |
super(IFBlock, self).__init__() | |
self.scale = scale | |
self.conv0 = conv(in_planes, c, 5, 2, 2) | |
self.res0 = ResBlock(c, c) | |
self.res1 = ResBlock(c, c) | |
self.res2 = ResBlock(c, c) | |
self.res3 = ResBlock(c, c) | |
self.res4 = ResBlock(c, c) | |
self.res5 = ResBlock(c, c) | |
self.conv1 = nn.Conv2d(c, 8, 3, 1, 1) | |
self.up = nn.PixelShuffle(2) | |
def forward(self, x): | |
if self.scale != 1: | |
x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear", | |
align_corners=False) | |
x = self.conv0(x) | |
x = self.res0(x) | |
x = self.res1(x) | |
x = self.res2(x) | |
x = self.res3(x) | |
x = self.res4(x) | |
x = self.res5(x) | |
x = self.conv1(x) | |
flow = self.up(x) | |
if self.scale != 1: | |
flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear", | |
align_corners=False) | |
return flow | |
class IFNet(nn.Module): | |
def __init__(self): | |
super(IFNet, self).__init__() | |
self.block0 = IFBlock(6, scale=8, c=192) | |
self.block1 = IFBlock(8, scale=4, c=128) | |
self.block2 = IFBlock(8, scale=2, c=96) | |
self.block3 = IFBlock(8, scale=1, c=48) | |
def forward(self, x, scale=1.0): | |
x = F.interpolate(x, scale_factor=0.5 * scale, mode="bilinear", | |
align_corners=False) | |
flow0 = self.block0(x) | |
F1 = flow0 | |
warped_img0 = warp(x[:, :3], F1) | |
warped_img1 = warp(x[:, 3:], -F1) | |
flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1), 1)) | |
F2 = (flow0 + flow1) | |
warped_img0 = warp(x[:, :3], F2) | |
warped_img1 = warp(x[:, 3:], -F2) | |
flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2), 1)) | |
F3 = (flow0 + flow1 + flow2) | |
warped_img0 = warp(x[:, :3], F3) | |
warped_img1 = warp(x[:, 3:], -F3) | |
flow3 = self.block3(torch.cat((warped_img0, warped_img1, F3), 1)) | |
F4 = (flow0 + flow1 + flow2 + flow3) | |
F4 = F.interpolate(F4, scale_factor=1 / scale, mode="bilinear", | |
align_corners=False) / scale | |
return F4, [F1, F2, F3, F4] | |
if __name__ == '__main__': | |
img0 = torch.zeros(3, 3, 256, 256).float().to(device) | |
img1 = torch.tensor(np.random.normal( | |
0, 1, (3, 3, 256, 256))).float().to(device) | |
imgs = torch.cat((img0, img1), 1) | |
flownet = IFNet() | |
flow, _ = flownet(imgs) | |
print(flow.shape) | |