xiank he
distill-any-depth
89a1e10
raw
history blame
11.6 kB
import matplotlib
import numpy as np
import torch
from PIL import Image
from PIL.Image import Resampling
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
import cv2
import re
def load_pfm(file):
color = None
width = None
height = None
scale = None
data_type = None
header = file.readline().decode('UTF-8').rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('UTF-8'))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
# scale = float(file.readline().rstrip())
scale = float((file.readline()).decode('UTF-8').rstrip())
if scale < 0: # little-endian
data_type = '<f'
else:
data_type = '>f' # big-endian
data_string = file.read()
data = np.fromstring(data_string, data_type)
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = cv2.flip(data, 0)
return data
# norm / 2 + 0.5
def depth_scale_shift_normalization(depth, low_percent=2, high_percent=98):
bsz = depth.shape[0]
depth_ = depth[:,0,:,:].reshape(bsz,-1).cpu().numpy()
min_value = torch.from_numpy(np.percentile(a=depth_,q=low_percent,axis=1)).to(depth)[...,None,None,None]
max_value = torch.from_numpy(np.percentile(a=depth_,q=high_percent,axis=1)).to(depth)[...,None,None,None]
normalized_depth = ((depth - min_value)/(max_value-min_value+1e-5) - 0.5) * 2
normalized_depth = torch.clip(normalized_depth, -1., 1.)
return normalized_depth
def norm_to_rgb(norm):
# norm: (3, H, W), range from [-1, 1]
# norm = norm[::-1, :, :] # For visualization
# norm_rgb = ((norm + 1) * 0.5) * 255.0
norm_rgb = ((norm + 1.0) / 2.0 * 255.0).astype(np.uint8)
# norm_rgb = norm * 255
norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255)
norm_rgb = norm_rgb.astype(np.uint8)
return norm_rgb
def colorize_depth_maps(
depth_map, min_depth=None, max_depth=None, cmap="Spectral", valid_mask=None
):
"""
Colorize depth maps.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().cpu().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
# if min_depth is None or max_depth is None:
# if cmap == "magma_r":
# min_depth = np.percentile(depth, 2)
# max_depth = np.percentile(depth, 85)
# elif cmap == "Spectral":
# min_depth = np.percentile(depth, 2)
# max_depth = np.percentile(depth, 98)
if min_depth != max_depth:
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
else:
# Avoid 0-division
depth = depth * 0.
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def chw2hwc(chw):
assert 3 == len(chw.shape)
if isinstance(chw, torch.Tensor):
hwc = torch.permute(chw, (1, 2, 0))
elif isinstance(chw, np.ndarray):
hwc = np.moveaxis(chw, 0, -1)
return hwc
def resize_max_res_torch(
img: torch.Tensor,
max_edge_resolution: int,
resample_method: InterpolationMode = InterpolationMode.BILINEAR,
) -> torch.Tensor:
"""
Resize image to limit maximum edge length while keeping aspect ratio.
Args:
img (`torch.Tensor`):
Image tensor to be resized.
max_edge_resolution (`int`):
Maximum edge length (pixel).
resample_method (`PIL.Image.Resampling`):
Resampling method used to resize images.
Returns:
`torch.Tensor`: Resized image.
"""
assert 3 == img.dim()
_, original_height, original_width = img.shape
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
round_num = 16
new_width = round(new_width / round_num) * round_num
new_height = round(new_height / round_num) * round_num
resized_img = resize(img, (new_height, new_width), resample_method, antialias=True)
return resized_img
def resize_max_res(img: Image.Image, max_edge_resolution: int, resample_method=Resampling.BILINEAR) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
# import pdb;pdb.set_trace()
if isinstance(img, torch.Tensor):
return resize_max_res_torch(img, max_edge_resolution, resample_method)
original_width, original_height = img.size
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
resized_img = img.resize((new_width, new_height), resample=resample_method)
return resized_img
def get_pil_resample_method(method_str: str) -> Resampling:
resample_method_dict = {
"bilinear": Resampling.BILINEAR,
"bicubic": Resampling.BICUBIC,
"nearest": Resampling.NEAREST,
}
resample_method = resample_method_dict.get(method_str, None)
if resample_method is None:
raise ValueError(f"Unknown resampling method: {resample_method}")
else:
return resample_method
def get_tv_resample_method(method_str: str) -> InterpolationMode:
resample_method_dict = {
"bilinear": InterpolationMode.BILINEAR,
"bicubic": InterpolationMode.BICUBIC,
# "nearest": InterpolationMode.NEAREST_EXACT,
}
resample_method = resample_method_dict.get(method_str, None)
if resample_method is None:
raise ValueError(f"Unknown resampling method: {resample_method}")
else:
return resample_method
def create_point_cloud(depth_map, camera_matrix, extrinsic_matrix):
"""Create point cloud from depth map and camera parameters."""
# Get shape of depth map
height, width = depth_map.shape
# Create meshgrid for pixel coordinates
x = np.linspace(0, width - 1, width)
y = np.linspace(0, height - 1, height)
x, y = np.meshgrid(x, y)
# Normalize pixel coordinates
normalized_x = (x - camera_matrix[0, 2]) / camera_matrix[0, 0]
normalized_y = (y - camera_matrix[1, 2]) / camera_matrix[1, 1]
normalized_z = np.ones_like(x)
# Homogeneous coordinates in camera frame
depth_map_reshaped = np.repeat(depth_map[:, :, np.newaxis], 3, axis=2)
homogeneous_camera_coords = depth_map_reshaped * np.dstack((normalized_x,
normalized_y,
normalized_z))
# Add ones to the last dimension
ones = np.ones((height, width, 1))
homogeneous_camera_coords = np.dstack((homogeneous_camera_coords, ones))
# Transform points to world coordinates
homogeneous_world_coords = np.dot(homogeneous_camera_coords,
extrinsic_matrix.T)
# Divide by the fourth coordinate (homogeneous normalization)
point_cloud = (homogeneous_world_coords[:, :, :3] /
homogeneous_world_coords[:, :, 3:])
point_cloud = point_cloud.reshape(-1, 3)
return point_cloud
def write_ply_mask(points,colors,path_ply,mask=None):
if mask is not None:
num = np.sum(mask)
else:
num = points.shape[0]
ply_header = '''
ply format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
end_header
'''.format(num)
# points.shape[0]
# import ipdb;ipdb.set_trace()
# if mask is not None:
with open(path_ply, 'w') as f:
f.write(ply_header)
for i in range(points.shape[0]):
if mask.reshape(-1)[i]:
f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2],
int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255)))
def write_ply(points,colors,path_ply,mask=None):
if mask is not None:
num = np.sum(mask)
else:
num = points.shape[0]
ply_header = '''ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
end_header
'''.format(num)
with open(path_ply, 'w') as f:
f.write(ply_header)
for i in range(points.shape[0]):
f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2],
int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255)))
def Disparity_Normalization(disparity):
min_value = torch.min(disparity)
max_value = torch.max(disparity)
normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2
return normalized_disparity
def Disparity_Normalization_mask(disparity, min_value, max_value):
normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2
return normalized_disparity
def resize_max_res_tensor(input_tensor,is_disp=False,recom_resolution=768):
original_H, original_W = input_tensor.shape[2:]
downscale_factor = min(recom_resolution/original_H,
recom_resolution/original_W)
resized_input_tensor = F.interpolate(input_tensor,
scale_factor=downscale_factor,mode='bilinear',
align_corners=False)
if is_disp:
return resized_input_tensor * downscale_factor, downscale_factor
else:
return resized_input_tensor