Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,563 Bytes
33a65b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import matplotlib
import numpy as np
import torch
from PIL import Image
from PIL.Image import Resampling
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
import cv2
import re
def load_pfm(file):
color = None
width = None
height = None
scale = None
data_type = None
header = file.readline().decode('UTF-8').rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('UTF-8'))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
# scale = float(file.readline().rstrip())
scale = float((file.readline()).decode('UTF-8').rstrip())
if scale < 0: # little-endian
data_type = '<f'
else:
data_type = '>f' # big-endian
data_string = file.read()
data = np.fromstring(data_string, data_type)
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = cv2.flip(data, 0)
return data
# norm / 2 + 0.5
def depth_scale_shift_normalization(depth, low_percent=2, high_percent=98):
bsz = depth.shape[0]
depth_ = depth[:,0,:,:].reshape(bsz,-1).cpu().numpy()
min_value = torch.from_numpy(np.percentile(a=depth_,q=low_percent,axis=1)).to(depth)[...,None,None,None]
max_value = torch.from_numpy(np.percentile(a=depth_,q=high_percent,axis=1)).to(depth)[...,None,None,None]
normalized_depth = ((depth - min_value)/(max_value-min_value+1e-5) - 0.5) * 2
normalized_depth = torch.clip(normalized_depth, -1., 1.)
return normalized_depth
def norm_to_rgb(norm):
# norm: (3, H, W), range from [-1, 1]
# norm = norm[::-1, :, :] # For visualization
# norm_rgb = ((norm + 1) * 0.5) * 255.0
norm_rgb = ((norm + 1.0) / 2.0 * 255.0).astype(np.uint8)
# norm_rgb = norm * 255
norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255)
norm_rgb = norm_rgb.astype(np.uint8)
return norm_rgb
def colorize_depth_maps(
depth_map, min_depth=None, max_depth=None, cmap="Spectral", valid_mask=None
):
"""
Colorize depth maps.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().cpu().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
# if min_depth is None or max_depth is None:
# if cmap == "magma_r":
# min_depth = np.percentile(depth, 2)
# max_depth = np.percentile(depth, 85)
# elif cmap == "Spectral":
# min_depth = np.percentile(depth, 2)
# max_depth = np.percentile(depth, 98)
if min_depth != max_depth:
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
else:
# Avoid 0-division
depth = depth * 0.
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def chw2hwc(chw):
assert 3 == len(chw.shape)
if isinstance(chw, torch.Tensor):
hwc = torch.permute(chw, (1, 2, 0))
elif isinstance(chw, np.ndarray):
hwc = np.moveaxis(chw, 0, -1)
return hwc
def resize_max_res_torch(
img: torch.Tensor,
max_edge_resolution: int,
resample_method: InterpolationMode = InterpolationMode.BILINEAR,
) -> torch.Tensor:
"""
Resize image to limit maximum edge length while keeping aspect ratio.
Args:
img (`torch.Tensor`):
Image tensor to be resized.
max_edge_resolution (`int`):
Maximum edge length (pixel).
resample_method (`PIL.Image.Resampling`):
Resampling method used to resize images.
Returns:
`torch.Tensor`: Resized image.
"""
assert 3 == img.dim()
_, original_height, original_width = img.shape
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
round_num = 16
new_width = round(new_width / round_num) * round_num
new_height = round(new_height / round_num) * round_num
resized_img = resize(img, (new_height, new_width), resample_method, antialias=True)
return resized_img
def resize_max_res(img: Image.Image, max_edge_resolution: int, resample_method=Resampling.BILINEAR) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
# import pdb;pdb.set_trace()
if isinstance(img, torch.Tensor):
return resize_max_res_torch(img, max_edge_resolution, resample_method)
original_width, original_height = img.size
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
resized_img = img.resize((new_width, new_height), resample=resample_method)
return resized_img
def get_pil_resample_method(method_str: str) -> Resampling:
resample_method_dict = {
"bilinear": Resampling.BILINEAR,
"bicubic": Resampling.BICUBIC,
"nearest": Resampling.NEAREST,
}
resample_method = resample_method_dict.get(method_str, None)
if resample_method is None:
raise ValueError(f"Unknown resampling method: {resample_method}")
else:
return resample_method
def get_tv_resample_method(method_str: str) -> InterpolationMode:
resample_method_dict = {
"bilinear": InterpolationMode.BILINEAR,
"bicubic": InterpolationMode.BICUBIC,
# "nearest": InterpolationMode.NEAREST_EXACT,
}
resample_method = resample_method_dict.get(method_str, None)
if resample_method is None:
raise ValueError(f"Unknown resampling method: {resample_method}")
else:
return resample_method
def create_point_cloud(depth_map, camera_matrix, extrinsic_matrix):
"""Create point cloud from depth map and camera parameters."""
# Get shape of depth map
height, width = depth_map.shape
# Create meshgrid for pixel coordinates
x = np.linspace(0, width - 1, width)
y = np.linspace(0, height - 1, height)
x, y = np.meshgrid(x, y)
# Normalize pixel coordinates
normalized_x = (x - camera_matrix[0, 2]) / camera_matrix[0, 0]
normalized_y = (y - camera_matrix[1, 2]) / camera_matrix[1, 1]
normalized_z = np.ones_like(x)
# Homogeneous coordinates in camera frame
depth_map_reshaped = np.repeat(depth_map[:, :, np.newaxis], 3, axis=2)
homogeneous_camera_coords = depth_map_reshaped * np.dstack((normalized_x,
normalized_y,
normalized_z))
# Add ones to the last dimension
ones = np.ones((height, width, 1))
homogeneous_camera_coords = np.dstack((homogeneous_camera_coords, ones))
# Transform points to world coordinates
homogeneous_world_coords = np.dot(homogeneous_camera_coords,
extrinsic_matrix.T)
# Divide by the fourth coordinate (homogeneous normalization)
point_cloud = (homogeneous_world_coords[:, :, :3] /
homogeneous_world_coords[:, :, 3:])
point_cloud = point_cloud.reshape(-1, 3)
return point_cloud
def write_ply_mask(points,colors,path_ply,mask=None):
if mask is not None:
num = np.sum(mask)
else:
num = points.shape[0]
ply_header = '''
ply format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
end_header
'''.format(num)
# points.shape[0]
# import ipdb;ipdb.set_trace()
# if mask is not None:
with open(path_ply, 'w') as f:
f.write(ply_header)
for i in range(points.shape[0]):
if mask.reshape(-1)[i]:
f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2],
int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255)))
def write_ply(points,colors,path_ply,mask=None):
if mask is not None:
num = np.sum(mask)
else:
num = points.shape[0]
ply_header = '''ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
end_header
'''.format(num)
with open(path_ply, 'w') as f:
f.write(ply_header)
for i in range(points.shape[0]):
f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2],
int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255)))
def Disparity_Normalization(disparity):
min_value = torch.min(disparity)
max_value = torch.max(disparity)
normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2
return normalized_disparity
def Disparity_Normalization_mask(disparity, min_value, max_value):
normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2
return normalized_disparity
def resize_max_res_tensor(input_tensor,is_disp=False,recom_resolution=768):
original_H, original_W = input_tensor.shape[2:]
downscale_factor = min(recom_resolution/original_H,
recom_resolution/original_W)
resized_input_tensor = F.interpolate(input_tensor,
scale_factor=downscale_factor,mode='bilinear',
align_corners=False)
if is_disp:
return resized_input_tensor * downscale_factor, downscale_factor
else:
return resized_input_tensor |