dasdasduhu / app.py
xinglilu's picture
Update app.py
74e0c1a verified
import spaces
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Load the diffusion pipeline without immediately moving it to GPU
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, use_safetensors=True)
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
# Examples for the Gradio UI
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
# CSS styling for the Gradio UI
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
# Determine the power device (GPU or CPU) for display purposes
power_device = "GPU" if torch.cuda.is_available() else "CPU"
# Gradio UI setup
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()