|
import os |
|
import os.path as osp |
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
import itertools |
|
from tensorboardX import SummaryWriter |
|
|
|
from NN.losses import make_criteria |
|
from utils.base import logger |
|
|
|
class GPS: |
|
def __init__(self, |
|
init_mode: str = 'random_synthesis', |
|
noise_sigma: float = 1.0, |
|
coarse_ratio: float = 0.2, |
|
coarse_ratio_factor: float = 6, |
|
pyr_factor: float = 0.75, |
|
num_stages_limit: int = -1, |
|
device: str = 'cuda:0', |
|
silent: bool = False |
|
): |
|
''' |
|
Args: |
|
init_mode: |
|
- 'random_synthesis': init with random seed |
|
- 'random': init with random seed |
|
noise_sigma: float = 1.0, random noise. |
|
coarse_ratio: float = 0.2, ratio at the coarse level. |
|
pyr_factor: float = 0.75, pyramid factor. |
|
num_stages_limit: int = -1, no limit. |
|
device: str = 'cuda:0', default device. |
|
silent: bool = False, mute the output. |
|
''' |
|
self.init_mode = init_mode |
|
self.noise_sigma = noise_sigma |
|
self.coarse_ratio = coarse_ratio |
|
self.coarse_ratio_factor = coarse_ratio_factor |
|
self.pyr_factor = pyr_factor |
|
self.num_stages_limit = num_stages_limit |
|
self.device = torch.device(device) |
|
self.silent = silent |
|
|
|
def _get_pyramid_lengths(self, dest, ext=None): |
|
"""Get a list of pyramid lengths""" |
|
if self.coarse_ratio == -1: |
|
self.coarse_ratio = np.around(ext['criteria']['patch_size'] * self.coarse_ratio_factor / dest, 2) |
|
|
|
lengths = [int(np.round(dest * self.coarse_ratio))] |
|
while lengths[-1] < dest: |
|
lengths.append(int(np.round(lengths[-1] / self.pyr_factor))) |
|
if lengths[-1] == lengths[-2]: |
|
lengths[-1] += 1 |
|
lengths[-1] = dest |
|
|
|
return lengths |
|
|
|
def _get_target_pyramid(self, target, ext=None): |
|
"""Reads a target motion(s) and create a pyraimd out of it. Ordered in increatorch.sing size""" |
|
self._num_target = len(target) |
|
lengths = [] |
|
min_len = 10000 |
|
for i in range(len(target)): |
|
new_length = self._get_pyramid_lengths(len(target[i]), ext) |
|
min_len = min(min_len, len(new_length)) |
|
if self.num_stages_limit != -1: |
|
new_length = new_length[:self.num_stages_limit] |
|
lengths.append(new_length) |
|
for i in range(len(target)): |
|
lengths[i] = lengths[i][-min_len:] |
|
self.pyraimd_lengths = lengths |
|
|
|
target_pyramid = [[] for _ in range(len(lengths[0]))] |
|
for step in range(len(lengths[0])): |
|
for i in range(len(target)): |
|
length = lengths[i][step] |
|
motion = target[i] |
|
target_pyramid[step].append(motion.sample(size=length).to(self.device)) |
|
|
|
|
|
|
|
|
|
|
|
if not self.silent: |
|
print('Levels:', lengths) |
|
for i in range(len(target_pyramid)): |
|
print(f'Number of clips in target pyramid {i} is {len(target_pyramid[i])}: {[[tgt.min(), tgt.max()] for tgt in target_pyramid[i]]}') |
|
|
|
return target_pyramid |
|
|
|
def _get_initial_motion(self): |
|
"""Prepare the initial motion for optimization""" |
|
if 'random_synthesis' in str(self.init_mode): |
|
m = self.init_mode.split('/')[-1] |
|
if m =='random_synthesis': |
|
final_length = sum([i[-1] for i in self.pyraimd_lengths]) |
|
elif 'x' in m: |
|
final_length = int(m.replace('x', '')) * sum([i[-1] for i in self.pyraimd_lengths]) |
|
elif (self.init_mode.split('/')[-1]).isdigit(): |
|
final_length = int(self.init_mode.split('/')[-1]) |
|
else: |
|
raise ValueError(f'incorrect init_mode: {self.init_mode}') |
|
|
|
self.synthesized_lengths = self._get_pyramid_lengths(final_length) |
|
|
|
else: |
|
raise ValueError(f'Unsupported init_mode {self.init_mode}') |
|
|
|
initial_motion = F.interpolate(torch.cat([self.target_pyramid[0][i] for i in range(self._num_target)], dim=-1), |
|
size=self.synthesized_lengths[0], mode='linear', align_corners=True) |
|
if self.noise_sigma > 0: |
|
initial_motion_w_noise = initial_motion + torch.randn_like(initial_motion) * self.noise_sigma |
|
initial_motion_w_noise = torch.fmod(initial_motion_w_noise, 1.0) |
|
else: |
|
initial_motion_w_noise = initial_motion |
|
|
|
if not self.silent: |
|
print('Synthesized lengths:', self.synthesized_lengths) |
|
print('Initial motion:', initial_motion.min(), initial_motion.max()) |
|
print('Initial motion with noise:', initial_motion_w_noise.min(), initial_motion_w_noise.max()) |
|
|
|
return initial_motion_w_noise |
|
|
|
def run(self, target, mode="backpropagate", ext=None, debug_dir=None): |
|
''' |
|
Run the patch-based motion synthesis. |
|
|
|
Args: |
|
target (torch.Tensor): Target data. |
|
mode (str): Optimization mode. Support ['backpropagate', 'match_and_blend'] |
|
ext (dict): extra data or constrain. |
|
debug_dir (str): Debug directory. |
|
''' |
|
|
|
self.target_pyramid = self._get_target_pyramid(target, ext) |
|
self.synthesized = self._get_initial_motion() |
|
if debug_dir is not None: |
|
writer = SummaryWriter(log_dir=debug_dir) |
|
|
|
|
|
if mode == "backpropagate": |
|
self.synthesized.requires_grad_(True) |
|
assert 'criteria' in ext.keys(), 'Please specify a criteria for synthsis.' |
|
criteria = make_criteria(ext['criteria']).to(self.device) |
|
elif mode == "match_and_blend": |
|
self.synthesized.requires_grad_(False) |
|
assert 'criteria' in ext.keys(), 'Please specify a criteria for synthsis.' |
|
criteria = make_criteria(ext['criteria']).to(self.device) |
|
else: |
|
raise ValueError(f'Unsupported mode: {mode}') |
|
|
|
|
|
self.pbar = logger(ext['num_itrs'], len(self.target_pyramid)) |
|
ext['pbar'] = self.pbar |
|
for lvl, lvl_target in enumerate(self.target_pyramid): |
|
self.pbar.new_lvl() |
|
if lvl > 0: |
|
with torch.no_grad(): |
|
self.synthesized = F.interpolate(self.synthesized.detach(), size=self.synthesized_lengths[lvl], mode='linear') |
|
if mode == "backpropagate": |
|
self.synthesized.requires_grad_(True) |
|
|
|
if mode == "backpropagate": |
|
self.synthesized, losses = GPS.backpropagate(self.synthesized, lvl_target, criteria, ext=ext) |
|
elif mode == "match_and_blend": |
|
self.synthesized, losses = GPS.match_and_blend(self.synthesized, lvl_target, criteria, ext=ext) |
|
|
|
criteria.clean_cache() |
|
if debug_dir: |
|
for itr in range(len(losses)): |
|
writer.add_scalar(f'optimize/losses_lvl{lvl}', losses[itr], itr) |
|
self.pbar.pbar.close() |
|
|
|
|
|
return self.synthesized.detach() |
|
|
|
@staticmethod |
|
def backpropagate(synthesized, targets, criteria=None, ext=None): |
|
""" |
|
Minimizes criteria(synthesized, target) for num_steps SGD steps |
|
Args: |
|
targets (torch.Tensor): Target data. |
|
ext (dict): extra configurations. |
|
""" |
|
if criteria is None: |
|
assert 'criteria' in ext.keys(), 'Criteria is not set' |
|
criteria = make_criteria(ext['criteria']).to(synthesized.device) |
|
|
|
optim = None |
|
if 'optimizer' in ext.keys(): |
|
if ext['optimizer'] == 'Adam': |
|
optim = torch.optim.Adam([synthesized], lr=ext['lr']) |
|
elif ext['optimizer'] == 'SGD': |
|
optim = torch.optim.SGD([synthesized], lr=ext['lr']) |
|
elif ext['optimizer'] == 'RMSprop': |
|
optim = torch.optim.RMSprop([synthesized], lr=ext['lr']) |
|
else: |
|
print(f'use default RMSprop optimizer') |
|
optim = torch.optim.RMSprop([synthesized], lr=ext['lr']) if optim is None else optim |
|
|
|
lr_decay = np.exp(np.log(0.333) / ext['num_itrs']) |
|
|
|
|
|
trajectory = ext['trajectory'] if 'trajectory' in ext.keys() else None |
|
|
|
losses = [] |
|
for _i in range(ext['num_itrs']): |
|
optim.zero_grad() |
|
|
|
loss = criteria(synthesized, targets) |
|
|
|
if trajectory is not None: |
|
target_traj = F.interpolate(trajectory, size=synthesized.shape[-1], mode='linear') |
|
|
|
target_velo = ext['pos2velo'](target_traj) |
|
|
|
velo_mask = [-3, -1] |
|
loss += 1 * F.l1_loss(synthesized[:, velo_mask, :], target_velo[:, velo_mask, :]) |
|
|
|
loss.backward() |
|
optim.step() |
|
|
|
|
|
losses.append(loss.item()) |
|
if 'pbar' in ext.keys(): |
|
ext['pbar'].step() |
|
ext['pbar'].print() |
|
|
|
return synthesized, losses |
|
|
|
@staticmethod |
|
@torch.no_grad() |
|
def match_and_blend(synthesized, targets, criteria, ext): |
|
""" |
|
Minimizes criteria(synthesized, target) |
|
Args: |
|
targets (torch.Tensor): Target data. |
|
ext (dict): extra configurations. |
|
""" |
|
losses = [] |
|
for _i in range(ext['num_itrs']): |
|
if 'parts_list' in ext.keys(): |
|
def extract_part_motions(motion, parts_list): |
|
part_motions = [] |
|
n_frames = motion.shape[-1] |
|
rot, pos = motion[:, :-3, :].reshape(-1, 6, n_frames), motion[:, -3:, :] |
|
|
|
for part in parts_list: |
|
|
|
part = [i -1 for i in part] |
|
|
|
|
|
if 0 in part: |
|
part_motions += [torch.cat([rot[part].view(1, -1, n_frames), pos.view(1, -1, n_frames)], dim=1)] |
|
else: |
|
part_motions += [rot[part].view(1, -1, n_frames)] |
|
|
|
return part_motions |
|
def combine_part_motions(part_motions, parts_list): |
|
assert len(part_motions) == len(parts_list) |
|
n_frames = part_motions[0].shape[-1] |
|
l = max(list(itertools.chain(*parts_list))) |
|
|
|
|
|
rot = torch.zeros(((l+1), 6, n_frames), device=part_motions[0].device) |
|
pos = torch.zeros((1, 3, n_frames), device=part_motions[0].device) |
|
div_rot = torch.zeros((l+1), device=part_motions[0].device) |
|
div_pos = torch.zeros(1, device=part_motions[0].device) |
|
|
|
for part_motion, part in zip(part_motions, parts_list): |
|
part = [i -1 for i in part] |
|
|
|
if 0 in part: |
|
|
|
pos += part_motion[:, -3:, :] |
|
div_pos += 1 |
|
rot[part] += part_motion[:, :-3, :].view(-1, 6, n_frames) |
|
div_rot[part] += 1 |
|
else: |
|
rot[part] += part_motion.view(-1, 6, n_frames) |
|
div_rot[part] += 1 |
|
|
|
|
|
|
|
rot = (rot.permute(1, 2, 0) / div_rot).permute(2, 0, 1) |
|
pos = pos / div_pos |
|
|
|
return torch.cat([rot.view(1, -1, n_frames), pos.view(1, 3, n_frames)], dim=1) |
|
|
|
|
|
|
|
synthesized_part_motions = extract_part_motions(synthesized, ext['parts_list']) |
|
targets_part_motions = [extract_part_motions(target, ext['parts_list']) for target in targets] |
|
|
|
synthesized = [] |
|
for _j in range(len(synthesized_part_motions)): |
|
synthesized_part_motion = synthesized_part_motions[_j] |
|
|
|
targets_part_motion = [target[_j] for target in targets_part_motions] |
|
|
|
synthesized += [criteria(synthesized_part_motion, targets_part_motion, ext=ext, return_blended_results=True)[0]] |
|
|
|
|
|
|
|
synthesized = combine_part_motions(synthesized, ext['parts_list']) |
|
|
|
|
|
|
|
|
|
losses = 0 |
|
|
|
|
|
|
|
else: |
|
synthesized, loss = criteria(synthesized, targets, ext=ext, return_blended_results=True) |
|
|
|
|
|
losses.append(loss.item()) |
|
if 'pbar' in ext.keys(): |
|
ext['pbar'].step() |
|
ext['pbar'].print() |
|
|
|
return synthesized, losses |
|
|
|
|