File size: 14,227 Bytes
98e2c81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import os.path as osp
import torch
import torch.nn.functional as F
import numpy as np
import itertools
from tensorboardX import SummaryWriter
from NN.losses import make_criteria
from utils.base import logger
class GPS:
def __init__(self,
init_mode: str = 'random_synthesis',
noise_sigma: float = 1.0,
coarse_ratio: float = 0.2,
coarse_ratio_factor: float = 6,
pyr_factor: float = 0.75,
num_stages_limit: int = -1,
device: str = 'cuda:0',
silent: bool = False
):
'''
Args:
init_mode:
- 'random_synthesis': init with random seed
- 'random': init with random seed
noise_sigma: float = 1.0, random noise.
coarse_ratio: float = 0.2, ratio at the coarse level.
pyr_factor: float = 0.75, pyramid factor.
num_stages_limit: int = -1, no limit.
device: str = 'cuda:0', default device.
silent: bool = False, mute the output.
'''
self.init_mode = init_mode
self.noise_sigma = noise_sigma
self.coarse_ratio = coarse_ratio
self.coarse_ratio_factor = coarse_ratio_factor
self.pyr_factor = pyr_factor
self.num_stages_limit = num_stages_limit
self.device = torch.device(device)
self.silent = silent
def _get_pyramid_lengths(self, dest, ext=None):
"""Get a list of pyramid lengths"""
if self.coarse_ratio == -1:
self.coarse_ratio = np.around(ext['criteria']['patch_size'] * self.coarse_ratio_factor / dest, 2)
lengths = [int(np.round(dest * self.coarse_ratio))]
while lengths[-1] < dest:
lengths.append(int(np.round(lengths[-1] / self.pyr_factor)))
if lengths[-1] == lengths[-2]:
lengths[-1] += 1
lengths[-1] = dest
return lengths
def _get_target_pyramid(self, target, ext=None):
"""Reads a target motion(s) and create a pyraimd out of it. Ordered in increatorch.sing size"""
self._num_target = len(target)
lengths = []
min_len = 10000
for i in range(len(target)):
new_length = self._get_pyramid_lengths(len(target[i]), ext)
min_len = min(min_len, len(new_length))
if self.num_stages_limit != -1:
new_length = new_length[:self.num_stages_limit]
lengths.append(new_length)
for i in range(len(target)):
lengths[i] = lengths[i][-min_len:]
self.pyraimd_lengths = lengths
target_pyramid = [[] for _ in range(len(lengths[0]))]
for step in range(len(lengths[0])):
for i in range(len(target)):
length = lengths[i][step]
motion = target[i]
target_pyramid[step].append(motion.sample(size=length).to(self.device))
# target_pyramid[step].append(motion.pos2velo(motion.sample(size=length)))
# motion.motion_data = motion.pos2velo(motion.motion_data)
# target_pyramid[step].append(motion.sample(size=length))
# motion.motion_data = motion.velo2pos(motion.motion_data)
if not self.silent:
print('Levels:', lengths)
for i in range(len(target_pyramid)):
print(f'Number of clips in target pyramid {i} is {len(target_pyramid[i])}: {[[tgt.min(), tgt.max()] for tgt in target_pyramid[i]]}')
return target_pyramid
def _get_initial_motion(self):
"""Prepare the initial motion for optimization"""
if 'random_synthesis' in str(self.init_mode):
m = self.init_mode.split('/')[-1]
if m =='random_synthesis':
final_length = sum([i[-1] for i in self.pyraimd_lengths])
elif 'x' in m:
final_length = int(m.replace('x', '')) * sum([i[-1] for i in self.pyraimd_lengths])
elif (self.init_mode.split('/')[-1]).isdigit():
final_length = int(self.init_mode.split('/')[-1])
else:
raise ValueError(f'incorrect init_mode: {self.init_mode}')
self.synthesized_lengths = self._get_pyramid_lengths(final_length)
else:
raise ValueError(f'Unsupported init_mode {self.init_mode}')
initial_motion = F.interpolate(torch.cat([self.target_pyramid[0][i] for i in range(self._num_target)], dim=-1),
size=self.synthesized_lengths[0], mode='linear', align_corners=True)
if self.noise_sigma > 0:
initial_motion_w_noise = initial_motion + torch.randn_like(initial_motion) * self.noise_sigma
initial_motion_w_noise = torch.fmod(initial_motion_w_noise, 1.0)
else:
initial_motion_w_noise = initial_motion
if not self.silent:
print('Synthesized lengths:', self.synthesized_lengths)
print('Initial motion:', initial_motion.min(), initial_motion.max())
print('Initial motion with noise:', initial_motion_w_noise.min(), initial_motion_w_noise.max())
return initial_motion_w_noise
def run(self, target, mode="backpropagate", ext=None, debug_dir=None):
'''
Run the patch-based motion synthesis.
Args:
target (torch.Tensor): Target data.
mode (str): Optimization mode. Support ['backpropagate', 'match_and_blend']
ext (dict): extra data or constrain.
debug_dir (str): Debug directory.
'''
# preprare data
self.target_pyramid = self._get_target_pyramid(target, ext)
self.synthesized = self._get_initial_motion()
if debug_dir is not None:
writer = SummaryWriter(log_dir=debug_dir)
# prepare configuration
if mode == "backpropagate":
self.synthesized.requires_grad_(True)
assert 'criteria' in ext.keys(), 'Please specify a criteria for synthsis.'
criteria = make_criteria(ext['criteria']).to(self.device)
elif mode == "match_and_blend":
self.synthesized.requires_grad_(False)
assert 'criteria' in ext.keys(), 'Please specify a criteria for synthsis.'
criteria = make_criteria(ext['criteria']).to(self.device)
else:
raise ValueError(f'Unsupported mode: {mode}')
# perform synthsis
self.pbar = logger(ext['num_itrs'], len(self.target_pyramid))
ext['pbar'] = self.pbar
for lvl, lvl_target in enumerate(self.target_pyramid):
self.pbar.new_lvl()
if lvl > 0:
with torch.no_grad():
self.synthesized = F.interpolate(self.synthesized.detach(), size=self.synthesized_lengths[lvl], mode='linear')
if mode == "backpropagate":
self.synthesized.requires_grad_(True)
if mode == "backpropagate": # direct optimize the synthesized motion
self.synthesized, losses = GPS.backpropagate(self.synthesized, lvl_target, criteria, ext=ext)
elif mode == "match_and_blend":
self.synthesized, losses = GPS.match_and_blend(self.synthesized, lvl_target, criteria, ext=ext)
criteria.clean_cache()
if debug_dir:
for itr in range(len(losses)):
writer.add_scalar(f'optimize/losses_lvl{lvl}', losses[itr], itr)
self.pbar.pbar.close()
return self.synthesized.detach()
@staticmethod
def backpropagate(synthesized, targets, criteria=None, ext=None):
"""
Minimizes criteria(synthesized, target) for num_steps SGD steps
Args:
targets (torch.Tensor): Target data.
ext (dict): extra configurations.
"""
if criteria is None:
assert 'criteria' in ext.keys(), 'Criteria is not set'
criteria = make_criteria(ext['criteria']).to(synthesized.device)
optim = None
if 'optimizer' in ext.keys():
if ext['optimizer'] == 'Adam':
optim = torch.optim.Adam([synthesized], lr=ext['lr'])
elif ext['optimizer'] == 'SGD':
optim = torch.optim.SGD([synthesized], lr=ext['lr'])
elif ext['optimizer'] == 'RMSprop':
optim = torch.optim.RMSprop([synthesized], lr=ext['lr'])
else:
print(f'use default RMSprop optimizer')
optim = torch.optim.RMSprop([synthesized], lr=ext['lr']) if optim is None else optim
# optim = torch.optim.Adam([synthesized], lr=ext['lr']) if optim is None else optim
lr_decay = np.exp(np.log(0.333) / ext['num_itrs'])
# other constraints
trajectory = ext['trajectory'] if 'trajectory' in ext.keys() else None
losses = []
for _i in range(ext['num_itrs']):
optim.zero_grad()
loss = criteria(synthesized, targets)
if trajectory is not None: ## velo constrain
target_traj = F.interpolate(trajectory, size=synthesized.shape[-1], mode='linear')
# target_traj = F.interpolate(trajectory, size=synthesized.shape[-1], mode='linear', align_corners=False)
target_velo = ext['pos2velo'](target_traj)
velo_mask = [-3, -1]
loss += 1 * F.l1_loss(synthesized[:, velo_mask, :], target_velo[:, velo_mask, :])
loss.backward()
optim.step()
# Update staus
losses.append(loss.item())
if 'pbar' in ext.keys():
ext['pbar'].step()
ext['pbar'].print()
return synthesized, losses
@staticmethod
@torch.no_grad()
def match_and_blend(synthesized, targets, criteria, ext):
"""
Minimizes criteria(synthesized, target)
Args:
targets (torch.Tensor): Target data.
ext (dict): extra configurations.
"""
losses = []
for _i in range(ext['num_itrs']):
if 'parts_list' in ext.keys():
def extract_part_motions(motion, parts_list):
part_motions = []
n_frames = motion.shape[-1]
rot, pos = motion[:, :-3, :].reshape(-1, 6, n_frames), motion[:, -3:, :]
for part in parts_list:
# part -= 1
part = [i -1 for i in part]
# print(part)
if 0 in part:
part_motions += [torch.cat([rot[part].view(1, -1, n_frames), pos.view(1, -1, n_frames)], dim=1)]
else:
part_motions += [rot[part].view(1, -1, n_frames)]
return part_motions
def combine_part_motions(part_motions, parts_list):
assert len(part_motions) == len(parts_list)
n_frames = part_motions[0].shape[-1]
l = max(list(itertools.chain(*parts_list)))
# print(l, n_frames)
# motion = torch.zeros((1, (l+1)*6 + 3, n_frames), device=part_motions[0].device)
rot = torch.zeros(((l+1), 6, n_frames), device=part_motions[0].device)
pos = torch.zeros((1, 3, n_frames), device=part_motions[0].device)
div_rot = torch.zeros((l+1), device=part_motions[0].device)
div_pos = torch.zeros(1, device=part_motions[0].device)
for part_motion, part in zip(part_motions, parts_list):
part = [i -1 for i in part]
if 0 in part:
# print(part_motion.shape)
pos += part_motion[:, -3:, :]
div_pos += 1
rot[part] += part_motion[:, :-3, :].view(-1, 6, n_frames)
div_rot[part] += 1
else:
rot[part] += part_motion.view(-1, 6, n_frames)
div_rot[part] += 1
# print(div_rot, div_pos)
# print(rot.shape)
rot = (rot.permute(1, 2, 0) / div_rot).permute(2, 0, 1)
pos = pos / div_pos
return torch.cat([rot.view(1, -1, n_frames), pos.view(1, 3, n_frames)], dim=1)
# raw_synthesized = synthesized
# print(synthesized, synthesized.shape)
synthesized_part_motions = extract_part_motions(synthesized, ext['parts_list'])
targets_part_motions = [extract_part_motions(target, ext['parts_list']) for target in targets]
synthesized = []
for _j in range(len(synthesized_part_motions)):
synthesized_part_motion = synthesized_part_motions[_j]
# synthesized += [synthesized_part_motion]
targets_part_motion = [target[_j] for target in targets_part_motions]
# # print(synthesized_part_motion.shape, targets_part_motion[0].shape)
synthesized += [criteria(synthesized_part_motion, targets_part_motion, ext=ext, return_blended_results=True)[0]]
# print(len(synthesized))
synthesized = combine_part_motions(synthesized, ext['parts_list'])
# print(synthesized, synthesized.shape)
# print((raw_synthesized-synthesized > 0.00001).sum())
# exit()
# print(synthesized.shape)
losses = 0
# exit()
else:
synthesized, loss = criteria(synthesized, targets, ext=ext, return_blended_results=True)
# Update staus
losses.append(loss.item())
if 'pbar' in ext.keys():
ext['pbar'].step()
ext['pbar'].print()
return synthesized, losses
|