CraftsMan3D / craftsman /data /Objaverse.py
wyysf's picture
update to v1.5
8133633
raw
history blame
2.05 kB
import math
import os
import json
import re
import cv2
from dataclasses import dataclass, field
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from craftsman import register
from craftsman.utils.typing import *
from craftsman.utils.config import parse_structured
from .base import BaseDataModuleConfig, BaseDataset
@dataclass
class ObjaverseDataModuleConfig(BaseDataModuleConfig):
pass
class ObjaverseDataset(BaseDataset):
pass
@register("Objaverse-datamodule")
class ObjaverseDataModule(pl.LightningDataModule):
cfg: ObjaverseDataModuleConfig
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
super().__init__()
self.cfg = parse_structured(ObjaverseDataModuleConfig, cfg)
def setup(self, stage=None) -> None:
if stage in [None, "fit"]:
self.train_dataset = ObjaverseDataset(self.cfg, "train")
if stage in [None, "fit", "validate"]:
self.val_dataset = ObjaverseDataset(self.cfg, "val")
if stage in [None, "test", "predict"]:
self.test_dataset = ObjaverseDataset(self.cfg, "test")
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size, collate_fn=None, num_workers=0) -> DataLoader:
return DataLoader(
dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=num_workers
)
def train_dataloader(self) -> DataLoader:
return self.general_loader(
self.train_dataset,
batch_size=self.cfg.batch_size,
collate_fn=self.train_dataset.collate,
num_workers=self.cfg.num_workers
)
def val_dataloader(self) -> DataLoader:
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1)