File size: 2,053 Bytes
8133633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import math
import os
import json
import re
import cv2
from dataclasses import dataclass, field

import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from craftsman import register
from craftsman.utils.typing import *
from craftsman.utils.config import parse_structured

from .base import BaseDataModuleConfig, BaseDataset

@dataclass
class ObjaverseDataModuleConfig(BaseDataModuleConfig):
    pass

class ObjaverseDataset(BaseDataset):
    pass


@register("Objaverse-datamodule")
class ObjaverseDataModule(pl.LightningDataModule):
    cfg: ObjaverseDataModuleConfig

    def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
        super().__init__()
        self.cfg = parse_structured(ObjaverseDataModuleConfig, cfg)

    def setup(self, stage=None) -> None:
        if stage in [None, "fit"]:
            self.train_dataset = ObjaverseDataset(self.cfg, "train")
        if stage in [None, "fit", "validate"]:
            self.val_dataset = ObjaverseDataset(self.cfg, "val")
        if stage in [None, "test", "predict"]:
            self.test_dataset = ObjaverseDataset(self.cfg, "test")

    def prepare_data(self):
        pass

    def general_loader(self, dataset, batch_size, collate_fn=None, num_workers=0) -> DataLoader:
        return DataLoader(
            dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=num_workers
        )

    def train_dataloader(self) -> DataLoader:
        return self.general_loader(
            self.train_dataset,
            batch_size=self.cfg.batch_size,
            collate_fn=self.train_dataset.collate,
            num_workers=self.cfg.num_workers
        )

    def val_dataloader(self) -> DataLoader:
        return self.general_loader(self.val_dataset, batch_size=1)

    def test_dataloader(self) -> DataLoader:
        return self.general_loader(self.test_dataset, batch_size=1)

    def predict_dataloader(self) -> DataLoader:
        return self.general_loader(self.test_dataset, batch_size=1)