Spaces:
Runtime error
Runtime error
File size: 4,566 Bytes
0742ded 9cd344f f528573 0742ded 9cd344f 1cd9790 9cd344f 1cd9790 9cd344f 803b60d 9cd344f 803b60d 9cd344f 803b60d 9cd344f 803b60d 9cd344f 1cd9790 9cd344f 1cd9790 742f042 3da8fbb 8a64a4e 2d188e9 8a64a4e 9cd344f dc50911 9cd344f 803b60d 9cd344f 1cd9790 9cd344f 803b60d 9cd344f 803b60d 9cd344f 803b60d dc50911 9cd344f 803b60d 9cd344f dc50911 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
from diffusers import StableDiffusionPipeline
MODEL_NAME = "whispy/whisper_italian"
YOUR_TOKEN="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"
# whisper model fine-tuned for italian
speech_ppl = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device="cpu"
)
# model summarizing text
summarizer_ppl = pipeline(
"summarization",
model="it5/it5-efficient-small-el32-news-summarization"
)
# model translating text from Italian to English
translator_ppl = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-it-en"
)
# model producing an image from text
image_ppl = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
#def transcribe(microphone, file_upload):
def transcribe(microphone):
warn_output = ""
# if (microphone is not None) and (file_upload is not None):
if (microphone is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
# elif (microphone is None) and (file_upload is None):
elif (microphone is None):
return "ERROR: You have to either use the microphone or upload an audio file"
# file = microphone if microphone is not None else file_upload
file = microphone
text = speech_ppl(file)["text"]
print("Text: ", text)
translate = translator_ppl(text)
print("Translate: ", translate)
translate = translate[0]["translation_text"]
print("Translate 2: ", translate)
print("Building image .....")
#image = image_ppl(translate).images[0]
#image = image_ppl(translate, num_inference_steps=15)["sample"]
prompt = "a photograph of an astronaut riding a horse"
image = image_ppl(prompt, num_inference_steps=15)
print("Image output: ", image)
print("Image: ", image.images)
#image.save("text-to-image.png")
return warn_output + text, translate, image
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
summary = summarizer(text)
summary = summary[0]["summary_text"]
translate = translator(summary)
translate = translate[0]["translation_text"]
return html_embed_str, text, summary, translate
#demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
#gr.inputs.Audio(source="upload", type="filepath", optional=True),
],
outputs=[gr.Textbox(label="Transcribed text"),
gr.Textbox(label="Summarized text"),
gr.Image(type="pil", label="Output image")],
layout="horizontal",
theme="huggingface",
title="Whisper Demo: Transcribe Audio to Image",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
'''
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
outputs=["html", "text", "text", "text"],
layout="horizontal",
theme="huggingface",
title="Whisper Demo: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
" arbitrary length."
),
allow_flagging="never",
)
'''
'''
with demo:
#gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
gr.TabbedInterface(mf_transcribe, "Transcribe Audio to Image")
demo.launch(enable_queue=True)
'''
mf_transcribe.launch(enable_queue=True)
|