Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +67 -0
- packages.txt +1 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
from transformers import (
|
5 |
+
WhisperForConditionalGeneration,
|
6 |
+
WhisperProcessor,
|
7 |
+
pipeline,
|
8 |
+
)
|
9 |
+
|
10 |
+
import os
|
11 |
+
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
|
12 |
+
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model = WhisperForConditionalGeneration.from_pretrained("whispy/whisper_italian").to(device)
|
15 |
+
processor = WhisperProcessor.from_pretrained("whispy/whisper_italian")
|
16 |
+
|
17 |
+
pipe = pipeline(model="whispy/whisper_italian")
|
18 |
+
|
19 |
+
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
20 |
+
"CompVis/stable-diffusion-v1-4",
|
21 |
+
custom_pipeline="speech_to_image_diffusion",
|
22 |
+
speech_model="whispy/whisper_italian",
|
23 |
+
speech_processor=processor,
|
24 |
+
use_auth_token=MY_SECRET_TOKEN,
|
25 |
+
revision="fp16",
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
)
|
28 |
+
|
29 |
+
diffuser_pipeline.enable_attention_slicing()
|
30 |
+
diffuser_pipeline = diffuser_pipeline.to(device)
|
31 |
+
|
32 |
+
def transcribe(audio):
|
33 |
+
text = pipe(audio)["text"]
|
34 |
+
return text
|
35 |
+
|
36 |
+
|
37 |
+
#ββββββββββββββββββββββββββββββββββββββββββββ
|
38 |
+
# GRADIO SETUP
|
39 |
+
title = "Speech to Diffusion β’ Community Pipeline"
|
40 |
+
description = """
|
41 |
+
<p style='text-align: center;'>This demo can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.<br />
|
42 |
+
Community examples consist of both inference and training examples that have been added by the community.<br />
|
43 |
+
<a href='https://github.com/huggingface/diffusers/tree/main/examples/community#speech-to-image' target='_blank'> Click here for more information about community pipelines </a>
|
44 |
+
</p>
|
45 |
+
"""
|
46 |
+
article = """
|
47 |
+
<p style='text-align: center;'>Community pipeline by Mikail Duzenli β’ Gradio demo by Sylvain Filoni & Ahsen Khaliq<p>
|
48 |
+
"""
|
49 |
+
audio_input = gr.Audio(source="microphone", type="filepath")
|
50 |
+
image_output = gr.Image()
|
51 |
+
|
52 |
+
def speech_to_text(audio_sample):
|
53 |
+
|
54 |
+
#process_audio = whisper.load_audio(audio_sample)
|
55 |
+
process_audio = transcribe(audio_sample)
|
56 |
+
output = diffuser_pipeline(process_audio)
|
57 |
+
|
58 |
+
print(f"""
|
59 |
+
ββββββββ
|
60 |
+
output: {output}
|
61 |
+
ββββββββ
|
62 |
+
""")
|
63 |
+
|
64 |
+
return output.images[0]
|
65 |
+
|
66 |
+
demo = gr.Interface(fn=speech_to_text, inputs=audio_input, outputs=image_output, title=title, description=description, article=article)
|
67 |
+
demo.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
pytube
|
4 |
+
sentencepiece
|