File size: 3,886 Bytes
0742ded
9cd344f
 
 
 
0742ded
 
 
9cd344f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0742ded
 
 
9cd344f
 
 
 
 
 
0742ded
 
9cd344f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch

import gradio as gr
import pytube as pt
from transformers import pipeline
from diffusers import DiffusionPipeline


MODEL_NAME = "whispy/whisper_italian"

device = 0 if torch.cuda.is_available() else "cpu"

summarizer = pipeline(
    "summarization",
    model="it5/it5-efficient-small-el32-news-summarization",
)

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    #custom_pipeline="speech_to_image_diffusion",
    #speech_model=model,
    #speech_processor=processor,
    #use_auth_token=MY_SECRET_TOKEN,
    #revision="fp16",
    #torch_dtype=torch.float16,
)

#diffuser_pipeline.enable_attention_slicing()
#diffuser_pipeline = diffuser_pipeline.to(device)

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-it-en")

def transcribe(microphone, file_upload):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    text = pipe(file)["text"]

    translate = translator(text)
    translate = translate[0]["translation_text"]

    output = diffuser_pipeline(translate)
    image = output.images[0]

    return warn_output + text, translate, image


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def yt_transcribe(yt_url):
    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    text = pipe("audio.mp3")["text"]

    summary = summarizer(text)
    summary = summary[0]["summary_text"]
      
    translate = translator(summary)
    translate = translate[0]["translation_text"]

    return html_embed_str, text, summary, translate

demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Audio(source="upload", type="filepath", optional=True),
    ],
    outputs=["text", "text", "image"],
    layout="horizontal",
    theme="huggingface",
    title="Whisper Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
    outputs=["html", "text", "text", "text"],
    layout="horizontal",
    theme="huggingface",
    title="Whisper Demo: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
        f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])

demo.launch(enable_queue=True)