chatbot / app.py
umaiku's picture
Update app.py
0635997 verified
raw
history blame
2.31 kB
import gradio as gr
from huggingface_hub import InferenceClient, login
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
import os
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""
login(token=os.getenv('TOKEN'))
client = InferenceClient("meta-llama/Llama-3.2-1B-Instruct")
#client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
vector_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
retriever = vector_db.as_retriever()
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="An Expert in Legal advice.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
description="# πŸ“œ Legal AI RAG Chatbot",
)
if __name__ == "__main__":
demo.launch(debug=True)