import gradio as gr from huggingface_hub import InferenceClient, login from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings import os """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference """ login(token=os.getenv('TOKEN')) client = InferenceClient("meta-llama/Llama-3.2-1B-Instruct") #client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd()) embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small") vector_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) retriever = vector_db.as_retriever() def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="An Expert in Legal advice.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], description="# 📜 Legal AI RAG Chatbot", ) if __name__ == "__main__": demo.launch(debug=True)