AiOS / detrsmpl /core /visualization /visualize_keypoints2d.py
ttxskk
update
d7e58f0
import glob
import os
import os.path as osp
import shutil
import warnings
from pathlib import Path
from typing import Iterable, List, Optional, Tuple, Union
import cv2
import numpy as np
from tqdm import tqdm
from detrsmpl.core.conventions.keypoints_mapping import KEYPOINTS_FACTORY
from detrsmpl.core.conventions.keypoints_mapping.human_data import (
HUMAN_DATA_LIMBS_INDEX,
HUMAN_DATA_PALETTE,
)
from detrsmpl.utils.demo_utils import get_different_colors
from detrsmpl.utils.ffmpeg_utils import images_to_video, video_to_images
from detrsmpl.utils.keypoint_utils import search_limbs
from detrsmpl.utils.path_utils import (
Existence,
check_input_path,
check_path_existence,
check_path_suffix,
prepare_output_path,
)
def _plot_kp2d_frame(kp2d_person: np.ndarray,
canvas: np.ndarray,
limbs: Union[list, dict,
np.ndarray] = HUMAN_DATA_LIMBS_INDEX,
palette: Optional[Union[dict, np.ndarray]] = None,
draw_bbox: bool = False,
with_number: bool = False,
font_size: Union[float, int] = 0.5,
disable_limbs: bool = False) -> np.ndarray:
"""Plot a single frame(array) with keypoints, limbs, bbox, index.
Args:
kp2d_person (np.ndarray): `np.ndarray` shape of (J * 2).
canvas (np.ndarray): cv2 image, (H * W * 3) array.
limbs (Union[list, dict, np.ndarray], optional): limbs in form of
`dict` or 2-dimensional `list` or `np.ndarray` of shape
(num_limb, 2).
`dict` is used mainly for function `visualize_kp2d`, you can also
get the limbs by function `search_limbs`.
Defaults to `HUMAN_DATA_LIMBS_INDEX`.
palette (Optional[Union[dict, np.ndarray, list]], optional):
Pass an (1, 3) `np.ndarray` or `list` [B, G, R] if want the whole
limbs and keypoints will be in same color.
Pass `None` to use our colorful palette.
Pass an (num_limb, 3) `np.ndarray` to get each limb your specific
color.
`dict` is used mainly for function `visualize_kp2d`, you can also
get the palette by function `search_limbs`.
Defaults to `HUMAN_DATA_PALETTE`.
draw_bbox (bool, optional): whether need to draw bounding boxes.
Defaults to False.
with_number (bool, optional): whether need to draw index numbers.
Defaults to False.
font_size (Union[float, int], optional): the font size of the index.
Defaults to 0.5.
disable_limbs (bool, optional): whether need to disable drawing limbs.
Defaults to False.
Returns:
np.ndarray: opencv image of shape (H * W * 3).
"""
# slice the kp2d array
kp2d_person = kp2d_person.copy()
if kp2d_person.shape[-1] >= 3:
kp2d_person = kp2d_person[..., :-1]
warnings.warn(
'The input array has more than 2-Dimensional coordinates, will'
'keep only the first 2-Dimensions of the last axis. The new'
f'array shape: {kp2d_person.shape}')
if kp2d_person.ndim == 3 and kp2d_person.shape[0] == 1:
kp2d_person = kp2d_person[0]
assert kp2d_person.ndim == 2 and kp2d_person.shape[
-1] == 2, f'Wrong input array shape {kp2d_person.shape}, \
should be (num_kp, 2)'
if draw_bbox:
bbox = _get_bbox(kp2d_person, canvas, expand=True)
else:
bbox = None
# determine the limb connections and palette
if not disable_limbs:
if isinstance(limbs, list):
limbs = {'body': limbs}
elif isinstance(limbs, np.ndarray):
limbs = {'body': limbs.reshape(-1, 2).astype(np.int32).tolist()}
else:
assert set(limbs.keys()).issubset(HUMAN_DATA_LIMBS_INDEX)
if palette is None:
palette = {'body': None}
elif isinstance(palette, dict):
assert set(palette.keys()) == set(limbs.keys())
else:
limbs = {'body': None}
# draw by part to specify the thickness and color
for part_name, part_limbs in limbs.items():
# scatter_points_index means the limb end points
if not disable_limbs:
scatter_points_index = list(
set(np.array([part_limbs]).reshape(-1).tolist()))
else:
scatter_points_index = list(range(len(kp2d_person)))
if isinstance(palette, dict) and part_name == 'body':
thickness = 2
radius = 3
color = get_different_colors(len(scatter_points_index))
elif disable_limbs and palette is None:
radius = 2
color = get_different_colors(len(scatter_points_index))
else:
thickness = 2
radius = 2
if isinstance(palette, np.ndarray):
color = palette.astype(np.int32)
elif isinstance(palette, dict):
color = np.array(palette[part_name]).astype(np.int32)
elif isinstance(palette, list):
color = np.array(palette).reshape(-1, 3).astype(np.int32)
if not disable_limbs:
for limb_index, limb in enumerate(part_limbs):
limb_index = min(limb_index, len(color) - 1)
cv2.line(canvas,
tuple(kp2d_person[limb[0]].astype(np.int32)),
tuple(kp2d_person[limb[1]].astype(np.int32)),
color=tuple(color[limb_index].tolist()),
thickness=thickness)
# draw the points inside the image region
for index in scatter_points_index:
x, y = kp2d_person[index, :2]
if np.isnan(x) or np.isnan(y):
continue
if 0 <= x < canvas.shape[1] and 0 <= y < canvas.shape[0]:
if disable_limbs:
point_color = color[index].tolist()
else:
point_color = color[min(color.shape[0] - 1,
len(scatter_points_index) -
1)].tolist()
cv2.circle(canvas, (int(x), int(y)),
radius,
point_color,
thickness=-1)
if with_number:
cv2.putText(
canvas, str(index), (int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX, font_size,
np.array([255, 255, 255]).astype(np.int32).tolist(), 2)
# draw the bboxes
if bbox is not None:
bbox = bbox.astype(np.int32)
cv2.rectangle(canvas, (bbox[0], bbox[2]), (bbox[1], bbox[3]),
(0, 255, 255), 1)
return canvas
def _get_bbox(keypoint_np: np.ndarray,
img_mat: Optional[np.ndarray] = None,
expand: bool = False):
"""get bbox of kp2d."""
x_max = np.max(keypoint_np[:, 0])
x_min = np.min(keypoint_np[:, 0])
y_max = np.max(keypoint_np[:, 1])
y_min = np.min(keypoint_np[:, 1])
if expand and img_mat is not None:
x_expand = (x_max - x_min) * 0.1
y_expand = (y_max - y_min) * 0.1
x_min = max(0, x_min - x_expand)
x_max = min(img_mat.shape[1], x_max + x_expand)
y_min = max(0, y_min - y_expand)
y_max = min(img_mat.shape[0], y_max + y_expand)
return np.asarray([x_min, x_max, y_min, y_max])
def _prepare_limb_palette(limbs,
palette,
pop_parts,
data_source,
mask,
search_limbs_func=search_limbs):
"""Prepare limbs and their palette for plotting.
Args:
limbs (Union[np.ndarray, List[int]]):
The preset limbs. This option is for free skeletons like BVH file.
In most cases, it's set to None,
this function will search a result for limbs automatically.
palette (Iterable):
The preset palette for limbs. Specified palette,
three int represents (B, G, R). Should be tuple or list.
In most cases, it's set to None,
a palette will be generated with the result of search_limbs.
pop_parts (Iterable[str]):
The body part names you do not
want to visualize.
When it's none, nothing will be removed.
data_source (str):
Data source type.
mask (Union[list, np.ndarray):
A mask to mask out the incorrect points.
Returns:
Tuple[dict, dict]: (limbs_target, limbs_palette).
"""
if limbs is not None:
limbs_target, limbs_palette = {
'body': limbs.tolist() if isinstance(limbs, np.ndarray) else limbs
}, get_different_colors(len(limbs))
else:
limbs_target, limbs_palette = search_limbs_func(
data_source=data_source, mask=mask)
if palette:
limbs_palette = np.array(palette, dtype=np.uint8)[None]
# check and pop the pop_parts
assert set(pop_parts).issubset(
HUMAN_DATA_PALETTE
), f'wrong part_names in pop_parts, supported parts are\
{set(HUMAN_DATA_PALETTE.keys())}'
for part_name in pop_parts:
if part_name in limbs_target:
limbs_target.pop(part_name)
limbs_palette.pop(part_name)
return limbs_target, limbs_palette
def _prepare_output_path(output_path, overwrite):
"""Prepare output path."""
prepare_output_path(output_path,
allowed_suffix=['.mp4', ''],
tag='output video',
path_type='auto',
overwrite=overwrite)
# output_path is a directory
if check_path_suffix(output_path, ['']):
temp_folder = output_path
os.makedirs(temp_folder, exist_ok=True)
else:
temp_folder = output_path + '_temp_images'
if check_path_existence(temp_folder, 'dir') in [
Existence.DirectoryExistNotEmpty, Existence.DirectoryExistEmpty
]:
shutil.rmtree(temp_folder)
os.makedirs(temp_folder, exist_ok=True)
return temp_folder
def _check_frame_path(frame_list):
"""Check frame path."""
for frame_path in frame_list:
if check_path_existence(frame_path, 'file') != Existence.FileExist or \
not check_path_suffix(frame_path, ['.png', '.jpg', '.jpeg']):
raise FileNotFoundError(
f'The frame should be .png or .jp(e)g: {frame_path}')
def _check_temp_path(temp_folder, frame_list, overwrite):
"""Check temp frame folder path."""
if not overwrite and frame_list is not None and len(frame_list) > 0:
if Path(temp_folder).absolute() == \
Path(frame_list[0]).parent.absolute():
raise FileExistsError(
f'{temp_folder} exists (set --overwrite to overwrite).')
class _CavasProducer:
"""Prepare background canvas, pure white if not set."""
def __init__(self,
frame_list,
resolution,
kp2d=None,
image_array=None,
default_scale=1.5):
"""Initialize a canvas writer."""
# check the origin background frames
if frame_list is not None:
_check_frame_path(frame_list)
self.frame_list = frame_list
else:
self.frame_list = []
self.resolution = resolution
self.kp2d = kp2d
# with numpy array frames
self.image_array = image_array
if self.resolution is None:
if self.image_array is not None:
self.auto_resolution = self.image_array.shape[1:3]
elif len(self.frame_list) > 1 and \
check_path_existence(
self.frame_list[0], 'file') == Existence.FileExist:
tmp_image_array = cv2.imread(self.frame_list[0])
self.auto_resolution = tmp_image_array.shape[:2]
else:
self.auto_resolution = [
int(np.max(kp2d) * default_scale),
int(np.max(kp2d) * default_scale)
]
self.len = kp2d.shape[0]
if self.image_array is None:
self.len_frame = len(self.frame_list)
else:
self.len_frame = self.image_array.shape[0]
def __getitem__(self, frame_index):
"""Get frame data from frame_list of image_array."""
# frame file exists, resolution not set
if frame_index < self.len_frame and self.resolution is None:
if self.image_array is not None:
canvas = self.image_array[frame_index]
else:
canvas = cv2.imread(self.frame_list[frame_index])
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = self.kp2d[frame_index]
# no frame file, resolution has been set
elif frame_index >= self.len_frame and self.resolution is not None:
canvas = np.ones((self.resolution[0], self.resolution[1], 3),
dtype=np.uint8) * 255
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = self.kp2d[frame_index]
# frame file exists, resolution has been set
elif frame_index < self.len_frame and self.resolution is not None:
if self.image_array is not None:
canvas = self.image_array[frame_index]
else:
canvas = cv2.imread(self.frame_list[frame_index])
w_scale = self.resolution[1] / canvas.shape[1]
h_scale = self.resolution[0] / canvas.shape[0]
canvas = cv2.resize(canvas,
(self.resolution[1], self.resolution[0]),
cv2.INTER_CUBIC)
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = np.array([[w_scale, h_scale]
]) * self.kp2d[frame_index]
# no frame file, no resolution
else:
canvas = np.ones(
(self.auto_resolution[0], self.auto_resolution[1], 3),
dtype=np.uint8) * 255
if self.kp2d is None:
kp2d_frame = None
else:
kp2d_frame = self.kp2d[frame_index]
return canvas, kp2d_frame
def __len__(self):
return self.len
def update_frame_list(frame_list, origin_frames, img_format, start, end):
"""Update frame list if have origin_frames."""
input_temp_folder = None
# choose in frame_list or origin_frames
if frame_list is None and origin_frames is None:
print('No background provided, will use pure white background.')
elif frame_list is not None and origin_frames is not None:
warnings.warn('Redundant input, will only use frame_list.')
origin_frames = None
if origin_frames is not None:
check_input_path(input_path=origin_frames,
allowed_suffix=['.mp4', '.gif', ''],
tag='origin frames',
path_type='auto')
if Path(origin_frames).is_file():
input_temp_folder = origin_frames + '_temp_images/'
video_to_images(origin_frames,
input_temp_folder,
start=start,
end=end)
frame_list = glob.glob(osp.join(input_temp_folder, '*.png'))
frame_list.sort()
else:
if img_format is None:
frame_list = []
for im_name in os.listdir(origin_frames):
if Path(im_name).suffix.lower() in [
'.png', '.jpg', '.jpeg'
]:
frame_list.append(osp.join(origin_frames, im_name))
else:
frame_list = []
for index in range(start, end):
frame_path = osp.join(origin_frames, img_format % index)
if osp.exists(frame_path):
frame_list.append(frame_path)
frame_list.sort()
return frame_list, input_temp_folder
def visualize_kp2d(
kp2d: np.ndarray,
output_path: Optional[str] = None,
frame_list: Optional[List[str]] = None,
origin_frames: Optional[str] = None,
image_array: Optional[np.ndarray] = None,
limbs: Optional[Union[np.ndarray, List[int]]] = None,
palette: Optional[Iterable[int]] = None,
data_source: str = 'coco',
mask: Optional[Union[list, np.ndarray]] = None,
img_format: str = '%06d.png',
start: int = 0,
end: int = -1,
overwrite: bool = False,
with_file_name: bool = True,
resolution: Optional[Union[Tuple[int, int], list]] = None,
fps: Union[float, int] = 30,
draw_bbox: bool = False,
with_number: bool = False,
pop_parts: Iterable[str] = None,
disable_tqdm: bool = False,
disable_limbs: bool = False,
return_array: Optional[bool] = False,
keypoints_factory: dict = KEYPOINTS_FACTORY,
remove_raw_file: bool = True,
) -> Union[None, np.ndarray]:
"""Visualize 2d keypoints to a video or into a folder of frames.
Args:
kp2d (np.ndarray): should be array of shape (f * J * 2)
or (f * n * J * 2)]
output_path (str): output video path or image folder.
frame_list (Optional[List[str]], optional): list of origin background
frame paths, element in list each should be a image path like
`*.jpg` or `*.png`. Higher priority than `origin_frames`.
Use this when your file names is hard to sort or you only want to
render a small number frames.
Defaults to None.
origin_frames (Optional[str], optional): origin background frame path,
could be `.mp4`, `.gif`(will be sliced into a folder) or an image
folder. Lower priority than `frame_list`.
Defaults to None.
limbs (Optional[Union[np.ndarray, List[int]]], optional):
if not specified, the limbs will be searched by search_limbs,
this option is for free skeletons like BVH file.
Defaults to None.
palette (Iterable, optional): specified palette, three int represents
(B, G, R). Should be tuple or list.
Defaults to None.
data_source (str, optional): data source type. Defaults to 'coco'.
mask (Optional[Union[list, np.ndarray]], optional):
mask to mask out the incorrect point.
Pass a `np.ndarray` of shape (J,) or `list` of length J.
Defaults to None.
img_format (str, optional): input image format. Default to '%06d.png',
start (int, optional): start frame index. Defaults to 0.
end (int, optional): end frame index. Defaults to -1.
overwrite (bool, optional): whether replace the origin frames.
Defaults to False.
with_file_name (bool, optional): whether write origin frame name on
the images. Defaults to True.
resolution (Optional[Union[Tuple[int, int], list]], optional):
(height, width) of the output video
will be the same size as the original images if not specified.
Defaults to None.
fps (Union[float, int], optional): fps. Defaults to 30.
draw_bbox (bool, optional): whether need to draw bounding boxes.
Defaults to False.
with_number (bool, optional): whether draw index number.
Defaults to False.
pop_parts (Iterable[str], optional): The body part names you do not
want to visualize. Supported parts are ['left_eye','right_eye'
,'nose', 'mouth', 'face', 'left_hand', 'right_hand'].
Defaults to [].frame_list
disable_tqdm (bool, optional):
Whether to disable the entire progressbar wrapper.
Defaults to False.
disable_limbs (bool, optional): whether need to disable drawing limbs.
Defaults to False.
return_array (bool, optional): Whether to return images as a opencv
array. Defaults to None.
keypoints_factory (dict, optional): Dict of all the conventions.
Defaults to KEYPOINTS_FACTORY.
Raises:
FileNotFoundError: check output video path.
FileNotFoundError: check input frame paths.
Returns:
Union[None, np.ndarray].
"""
# check the input array shape, reshape to (num_frames, num_person, J, 2)
kp2d = kp2d[..., :2].copy()
if kp2d.ndim == 3:
kp2d = kp2d[:, np.newaxis]
assert kp2d.ndim == 4
num_frames, num_person = kp2d.shape[0], kp2d.shape[1]
# slice the input array temporally
end = (min(num_frames - 1, end) + num_frames) % num_frames
kp2d = kp2d[start:end + 1]
if image_array is not None:
origin_frames = None
frame_list = None
return_array = True
input_temp_folder = None
else:
frame_list, input_temp_folder = update_frame_list(
frame_list, origin_frames, img_format, start, end)
kp2d = kp2d[:num_frames]
# check output path
if output_path is not None:
output_temp_folder = _prepare_output_path(output_path, overwrite)
# check whether temp_folder will overwrite frame_list by accident
_check_temp_path(output_temp_folder, frame_list, overwrite)
else:
output_temp_folder = None
# check data_source & mask
if data_source not in keypoints_factory:
raise ValueError('Wrong data_source. Should choose in'
f'{list(keypoints_factory.keys())}')
if mask is not None:
if isinstance(mask, list):
mask = np.array(mask).reshape(-1)
assert mask.shape == (
len(keypoints_factory[data_source]),
), f'mask length should fit with keypoints number \
{len(keypoints_factory[data_source])}'
# search the limb connections and palettes from superset smplx
# check and pop the pop_parts
if pop_parts is None:
pop_parts = []
if disable_limbs:
limbs_target, limbs_palette = None, None
else:
# *** changed by wyj ***
limbs_target, limbs_palette = _prepare_limb_palette(
limbs, palette, pop_parts, data_source, mask)
# limbs_target, limbs_palette = limbs, palette
canvas_producer = _CavasProducer(frame_list, resolution, kp2d, image_array)
out_image_array = []
# start plotting by frame
for frame_index in tqdm(range(kp2d.shape[0]), disable=disable_tqdm):
canvas, kp2d_frame = canvas_producer[frame_index]
# start plotting by person
for person_index in range(num_person):
if num_person >= 2 and not disable_limbs:
limbs_palette = get_different_colors(
num_person)[person_index].reshape(1, 3)
canvas = _plot_kp2d_frame(kp2d_person=kp2d_frame[person_index],
canvas=canvas,
limbs=limbs_target,
palette=limbs_palette,
draw_bbox=draw_bbox,
with_number=with_number,
font_size=0.5,
disable_limbs=disable_limbs)
if with_file_name and frame_list is not None:
h, w, _ = canvas.shape
if frame_index <= len(frame_list) - 1:
cv2.putText(
canvas, str(Path(frame_list[frame_index]).name),
(w // 2, h // 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5 * h / 500,
np.array([255, 255, 255]).astype(np.int32).tolist(), 2)
if output_path is not None:
# write the frame with opencv
if frame_list is not None and check_path_suffix(
output_path,
'') and len(frame_list) >= len(canvas_producer):
frame_path = os.path.join(output_temp_folder,
Path(frame_list[frame_index]).name)
img_format = None
else:
frame_path = \
os.path.join(output_temp_folder, f'{frame_index:06d}.png')
img_format = '%06d.png'
cv2.imwrite(frame_path, canvas)
if return_array:
out_image_array.append(canvas[None])
if input_temp_folder is not None:
shutil.rmtree(input_temp_folder)
# convert frames to video
if output_path is not None:
if check_path_suffix(output_path, ['.mp4']):
images_to_video(input_folder=output_temp_folder,
output_path=output_path,
remove_raw_file=remove_raw_file,
img_format=img_format,
fps=fps)
if return_array:
out_image_array = np.concatenate(out_image_array)
return out_image_array