File size: 25,477 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import glob
import os
import os.path as osp
import shutil
import warnings
from pathlib import Path
from typing import Iterable, List, Optional, Tuple, Union

import cv2
import numpy as np
from tqdm import tqdm

from detrsmpl.core.conventions.keypoints_mapping import KEYPOINTS_FACTORY
from detrsmpl.core.conventions.keypoints_mapping.human_data import (
    HUMAN_DATA_LIMBS_INDEX,
    HUMAN_DATA_PALETTE,
)
from detrsmpl.utils.demo_utils import get_different_colors
from detrsmpl.utils.ffmpeg_utils import images_to_video, video_to_images
from detrsmpl.utils.keypoint_utils import search_limbs
from detrsmpl.utils.path_utils import (
    Existence,
    check_input_path,
    check_path_existence,
    check_path_suffix,
    prepare_output_path,
)


def _plot_kp2d_frame(kp2d_person: np.ndarray,
                     canvas: np.ndarray,
                     limbs: Union[list, dict,
                                  np.ndarray] = HUMAN_DATA_LIMBS_INDEX,
                     palette: Optional[Union[dict, np.ndarray]] = None,
                     draw_bbox: bool = False,
                     with_number: bool = False,
                     font_size: Union[float, int] = 0.5,
                     disable_limbs: bool = False) -> np.ndarray:
    """Plot a single frame(array) with keypoints, limbs, bbox, index.

    Args:
        kp2d_person (np.ndarray): `np.ndarray` shape of (J * 2).
        canvas (np.ndarray): cv2 image, (H * W * 3) array.
        limbs (Union[list, dict, np.ndarray], optional): limbs in form of
            `dict` or 2-dimensional `list` or `np.ndarray` of shape
            (num_limb, 2).
            `dict` is used mainly for function `visualize_kp2d`, you can also
            get the limbs by function `search_limbs`.
            Defaults to `HUMAN_DATA_LIMBS_INDEX`.
        palette (Optional[Union[dict, np.ndarray, list]], optional):
            Pass an (1, 3) `np.ndarray` or `list` [B, G, R] if want the whole
            limbs and keypoints will be in same color.
            Pass `None` to use our colorful palette.
            Pass an (num_limb, 3) `np.ndarray` to get each limb your specific
            color.
            `dict` is used mainly for function `visualize_kp2d`, you can also
            get the palette by function `search_limbs`.
            Defaults to `HUMAN_DATA_PALETTE`.
        draw_bbox (bool, optional): whether need to draw bounding boxes.
            Defaults to False.
        with_number (bool, optional): whether need to draw index numbers.
            Defaults to False.
        font_size (Union[float, int], optional): the font size of the index.
            Defaults to 0.5.
        disable_limbs (bool, optional): whether need to disable drawing limbs.
            Defaults to False.

    Returns:
        np.ndarray: opencv image of shape (H * W * 3).
    """
    # slice the kp2d array
    kp2d_person = kp2d_person.copy()
    if kp2d_person.shape[-1] >= 3:
        kp2d_person = kp2d_person[..., :-1]
        warnings.warn(
            'The input array has more than 2-Dimensional coordinates, will'
            'keep only the first 2-Dimensions of the last axis. The new'
            f'array shape: {kp2d_person.shape}')
    if kp2d_person.ndim == 3 and kp2d_person.shape[0] == 1:
        kp2d_person = kp2d_person[0]
    assert kp2d_person.ndim == 2 and kp2d_person.shape[
        -1] == 2, f'Wrong input array shape {kp2d_person.shape}, \
            should be (num_kp, 2)'

    if draw_bbox:
        bbox = _get_bbox(kp2d_person, canvas, expand=True)
    else:
        bbox = None

    # determine the limb connections and palette
    if not disable_limbs:
        if isinstance(limbs, list):
            limbs = {'body': limbs}
        elif isinstance(limbs, np.ndarray):
            limbs = {'body': limbs.reshape(-1, 2).astype(np.int32).tolist()}
        else:
            assert set(limbs.keys()).issubset(HUMAN_DATA_LIMBS_INDEX)

        if palette is None:
            palette = {'body': None}
        elif isinstance(palette, dict):
            assert set(palette.keys()) == set(limbs.keys())
    else:
        limbs = {'body': None}
    # draw by part to specify the thickness and color
    for part_name, part_limbs in limbs.items():
        # scatter_points_index means the limb end points
        if not disable_limbs:
            scatter_points_index = list(
                set(np.array([part_limbs]).reshape(-1).tolist()))
        else:
            scatter_points_index = list(range(len(kp2d_person)))
        if isinstance(palette, dict) and part_name == 'body':
            thickness = 2
            radius = 3
            color = get_different_colors(len(scatter_points_index))
        elif disable_limbs and palette is None:
            radius = 2
            color = get_different_colors(len(scatter_points_index))
        else:
            thickness = 2
            radius = 2
            if isinstance(palette, np.ndarray):
                color = palette.astype(np.int32)
            elif isinstance(palette, dict):
                color = np.array(palette[part_name]).astype(np.int32)
            elif isinstance(palette, list):
                color = np.array(palette).reshape(-1, 3).astype(np.int32)
        if not disable_limbs:
            for limb_index, limb in enumerate(part_limbs):
                limb_index = min(limb_index, len(color) - 1)
                cv2.line(canvas,
                         tuple(kp2d_person[limb[0]].astype(np.int32)),
                         tuple(kp2d_person[limb[1]].astype(np.int32)),
                         color=tuple(color[limb_index].tolist()),
                         thickness=thickness)
        # draw the points inside the image region
        for index in scatter_points_index:
            x, y = kp2d_person[index, :2]
            if np.isnan(x) or np.isnan(y):
                continue
            if 0 <= x < canvas.shape[1] and 0 <= y < canvas.shape[0]:
                if disable_limbs:
                    point_color = color[index].tolist()
                else:
                    point_color = color[min(color.shape[0] - 1,
                                            len(scatter_points_index) -
                                            1)].tolist()

                cv2.circle(canvas, (int(x), int(y)),
                           radius,
                           point_color,
                           thickness=-1)
                if with_number:
                    cv2.putText(
                        canvas, str(index), (int(x), int(y)),
                        cv2.FONT_HERSHEY_SIMPLEX, font_size,
                        np.array([255, 255, 255]).astype(np.int32).tolist(), 2)
    # draw the bboxes
    if bbox is not None:
        bbox = bbox.astype(np.int32)
        cv2.rectangle(canvas, (bbox[0], bbox[2]), (bbox[1], bbox[3]),
                      (0, 255, 255), 1)
    return canvas


def _get_bbox(keypoint_np: np.ndarray,
              img_mat: Optional[np.ndarray] = None,
              expand: bool = False):
    """get bbox of kp2d."""
    x_max = np.max(keypoint_np[:, 0])
    x_min = np.min(keypoint_np[:, 0])
    y_max = np.max(keypoint_np[:, 1])
    y_min = np.min(keypoint_np[:, 1])
    if expand and img_mat is not None:
        x_expand = (x_max - x_min) * 0.1
        y_expand = (y_max - y_min) * 0.1
        x_min = max(0, x_min - x_expand)
        x_max = min(img_mat.shape[1], x_max + x_expand)
        y_min = max(0, y_min - y_expand)
        y_max = min(img_mat.shape[0], y_max + y_expand)
    return np.asarray([x_min, x_max, y_min, y_max])


def _prepare_limb_palette(limbs,
                          palette,
                          pop_parts,
                          data_source,
                          mask,
                          search_limbs_func=search_limbs):
    """Prepare limbs and their palette for plotting.

    Args:
        limbs (Union[np.ndarray, List[int]]):
            The preset limbs. This option is for free skeletons like BVH file.
            In most cases, it's set to None,
            this function will search a result for limbs automatically.
        palette (Iterable):
            The preset palette for limbs. Specified palette,
            three int represents (B, G, R). Should be tuple or list.
            In most cases, it's set to None,
            a palette will be generated with the result of search_limbs.
        pop_parts (Iterable[str]):
            The body part names you do not
            want to visualize.
            When it's none, nothing will be removed.
        data_source (str):
            Data source type.
        mask (Union[list, np.ndarray):
            A mask to mask out the incorrect points.

    Returns:
        Tuple[dict, dict]: (limbs_target, limbs_palette).
    """
    if limbs is not None:
        limbs_target, limbs_palette = {
            'body': limbs.tolist() if isinstance(limbs, np.ndarray) else limbs
        }, get_different_colors(len(limbs))
    else:
        limbs_target, limbs_palette = search_limbs_func(
            data_source=data_source, mask=mask)

    if palette:
        limbs_palette = np.array(palette, dtype=np.uint8)[None]

    # check and pop the pop_parts
    assert set(pop_parts).issubset(
        HUMAN_DATA_PALETTE
    ), f'wrong part_names in pop_parts, supported parts are\
            {set(HUMAN_DATA_PALETTE.keys())}'

    for part_name in pop_parts:
        if part_name in limbs_target:
            limbs_target.pop(part_name)
            limbs_palette.pop(part_name)
    return limbs_target, limbs_palette


def _prepare_output_path(output_path, overwrite):
    """Prepare output path."""
    prepare_output_path(output_path,
                        allowed_suffix=['.mp4', ''],
                        tag='output video',
                        path_type='auto',
                        overwrite=overwrite)
    # output_path is a directory
    if check_path_suffix(output_path, ['']):
        temp_folder = output_path
        os.makedirs(temp_folder, exist_ok=True)
    else:
        temp_folder = output_path + '_temp_images'
        if check_path_existence(temp_folder, 'dir') in [
                Existence.DirectoryExistNotEmpty, Existence.DirectoryExistEmpty
        ]:
            shutil.rmtree(temp_folder)
        os.makedirs(temp_folder, exist_ok=True)
    return temp_folder


def _check_frame_path(frame_list):
    """Check frame path."""
    for frame_path in frame_list:
        if check_path_existence(frame_path, 'file') != Existence.FileExist or \
                 not check_path_suffix(frame_path, ['.png', '.jpg', '.jpeg']):
            raise FileNotFoundError(
                f'The frame should be .png or .jp(e)g: {frame_path}')


def _check_temp_path(temp_folder, frame_list, overwrite):
    """Check temp frame folder path."""
    if not overwrite and frame_list is not None and len(frame_list) > 0:
        if Path(temp_folder).absolute() == \
                Path(frame_list[0]).parent.absolute():
            raise FileExistsError(
                f'{temp_folder} exists (set --overwrite to overwrite).')


class _CavasProducer:
    """Prepare background canvas, pure white if not set."""
    def __init__(self,
                 frame_list,
                 resolution,
                 kp2d=None,
                 image_array=None,
                 default_scale=1.5):
        """Initialize a canvas writer."""
        # check the origin background frames
        if frame_list is not None:
            _check_frame_path(frame_list)
            self.frame_list = frame_list
        else:
            self.frame_list = []
        self.resolution = resolution
        self.kp2d = kp2d

        # with numpy array frames
        self.image_array = image_array

        if self.resolution is None:
            if self.image_array is not None:
                self.auto_resolution = self.image_array.shape[1:3]
            elif len(self.frame_list) > 1 and \
                    check_path_existence(
                        self.frame_list[0], 'file') == Existence.FileExist:
                tmp_image_array = cv2.imread(self.frame_list[0])
                self.auto_resolution = tmp_image_array.shape[:2]
            else:

                self.auto_resolution = [
                    int(np.max(kp2d) * default_scale),
                    int(np.max(kp2d) * default_scale)
                ]
        self.len = kp2d.shape[0]

        if self.image_array is None:
            self.len_frame = len(self.frame_list)
        else:
            self.len_frame = self.image_array.shape[0]

    def __getitem__(self, frame_index):
        """Get frame data from frame_list of image_array."""
        # frame file exists, resolution not set
        if frame_index < self.len_frame and self.resolution is None:
            if self.image_array is not None:
                canvas = self.image_array[frame_index]
            else:
                canvas = cv2.imread(self.frame_list[frame_index])
            if self.kp2d is None:
                kp2d_frame = None
            else:
                kp2d_frame = self.kp2d[frame_index]
        # no frame file, resolution has been set
        elif frame_index >= self.len_frame and self.resolution is not None:
            canvas = np.ones((self.resolution[0], self.resolution[1], 3),
                             dtype=np.uint8) * 255
            if self.kp2d is None:
                kp2d_frame = None
            else:
                kp2d_frame = self.kp2d[frame_index]
        # frame file exists, resolution has been set
        elif frame_index < self.len_frame and self.resolution is not None:
            if self.image_array is not None:
                canvas = self.image_array[frame_index]
            else:
                canvas = cv2.imread(self.frame_list[frame_index])
            w_scale = self.resolution[1] / canvas.shape[1]
            h_scale = self.resolution[0] / canvas.shape[0]
            canvas = cv2.resize(canvas,
                                (self.resolution[1], self.resolution[0]),
                                cv2.INTER_CUBIC)
            if self.kp2d is None:
                kp2d_frame = None
            else:
                kp2d_frame = np.array([[w_scale, h_scale]
                                       ]) * self.kp2d[frame_index]
        # no frame file, no resolution
        else:
            canvas = np.ones(
                (self.auto_resolution[0], self.auto_resolution[1], 3),
                dtype=np.uint8) * 255
            if self.kp2d is None:
                kp2d_frame = None
            else:
                kp2d_frame = self.kp2d[frame_index]
        return canvas, kp2d_frame

    def __len__(self):
        return self.len


def update_frame_list(frame_list, origin_frames, img_format, start, end):
    """Update frame list if have origin_frames."""
    input_temp_folder = None
    # choose in frame_list or origin_frames
    if frame_list is None and origin_frames is None:
        print('No background provided, will use pure white background.')
    elif frame_list is not None and origin_frames is not None:
        warnings.warn('Redundant input, will only use frame_list.')
        origin_frames = None
    if origin_frames is not None:
        check_input_path(input_path=origin_frames,
                         allowed_suffix=['.mp4', '.gif', ''],
                         tag='origin frames',
                         path_type='auto')
        if Path(origin_frames).is_file():
            input_temp_folder = origin_frames + '_temp_images/'
            video_to_images(origin_frames,
                            input_temp_folder,
                            start=start,
                            end=end)
            frame_list = glob.glob(osp.join(input_temp_folder, '*.png'))
            frame_list.sort()
        else:
            if img_format is None:
                frame_list = []
                for im_name in os.listdir(origin_frames):
                    if Path(im_name).suffix.lower() in [
                            '.png', '.jpg', '.jpeg'
                    ]:
                        frame_list.append(osp.join(origin_frames, im_name))
            else:
                frame_list = []
                for index in range(start, end):
                    frame_path = osp.join(origin_frames, img_format % index)
                    if osp.exists(frame_path):
                        frame_list.append(frame_path)
            frame_list.sort()
    return frame_list, input_temp_folder


def visualize_kp2d(
    kp2d: np.ndarray,
    output_path: Optional[str] = None,
    frame_list: Optional[List[str]] = None,
    origin_frames: Optional[str] = None,
    image_array: Optional[np.ndarray] = None,
    limbs: Optional[Union[np.ndarray, List[int]]] = None,
    palette: Optional[Iterable[int]] = None,
    data_source: str = 'coco',
    mask: Optional[Union[list, np.ndarray]] = None,
    img_format: str = '%06d.png',
    start: int = 0,
    end: int = -1,
    overwrite: bool = False,
    with_file_name: bool = True,
    resolution: Optional[Union[Tuple[int, int], list]] = None,
    fps: Union[float, int] = 30,
    draw_bbox: bool = False,
    with_number: bool = False,
    pop_parts: Iterable[str] = None,
    disable_tqdm: bool = False,
    disable_limbs: bool = False,
    return_array: Optional[bool] = False,
    keypoints_factory: dict = KEYPOINTS_FACTORY,
    remove_raw_file: bool = True,
) -> Union[None, np.ndarray]:
    """Visualize 2d keypoints to a video or into a folder of frames.

    Args:
        kp2d (np.ndarray): should be array of shape (f * J * 2)
                                or (f * n * J * 2)]
        output_path (str): output video path or image folder.
        frame_list (Optional[List[str]], optional): list of origin background
            frame paths, element in list each should be a image path like
            `*.jpg` or `*.png`. Higher priority than `origin_frames`.
            Use this when your file names is hard to sort or you only want to
            render a small number frames.
            Defaults to None.
        origin_frames (Optional[str], optional): origin background frame path,
            could be `.mp4`, `.gif`(will be sliced into a folder) or an image
            folder. Lower priority than `frame_list`.
            Defaults to None.
        limbs (Optional[Union[np.ndarray, List[int]]], optional):
                if not specified, the limbs will be searched by search_limbs,
                this option is for free skeletons like BVH file.
                Defaults to None.
        palette (Iterable, optional): specified palette, three int represents
                (B, G, R). Should be tuple or list.
                Defaults to None.
        data_source (str, optional): data source type. Defaults to 'coco'.
        mask (Optional[Union[list, np.ndarray]], optional):
                mask to mask out the incorrect point.
                Pass a `np.ndarray` of shape (J,) or `list` of length J.
                Defaults to None.
        img_format (str, optional): input image format. Default to '%06d.png',
        start (int, optional): start frame index. Defaults to 0.
        end (int, optional): end frame index. Defaults to -1.
        overwrite (bool, optional): whether replace the origin frames.
                Defaults to False.
        with_file_name (bool, optional): whether write origin frame name on
                the images. Defaults to True.
        resolution (Optional[Union[Tuple[int, int], list]], optional):
                (height, width) of the output video
                will be the same size as the original images if not specified.
                Defaults to None.
        fps (Union[float, int], optional): fps. Defaults to 30.
        draw_bbox (bool, optional): whether need to draw bounding boxes.
                Defaults to False.
        with_number (bool, optional): whether draw index number.
                Defaults to False.
        pop_parts (Iterable[str], optional): The body part names you do not
                want to visualize. Supported parts are ['left_eye','right_eye'
                ,'nose', 'mouth', 'face', 'left_hand', 'right_hand'].
                Defaults to [].frame_list
        disable_tqdm (bool, optional):
            Whether to disable the entire progressbar wrapper.
            Defaults to False.
        disable_limbs (bool, optional): whether need to disable drawing limbs.
            Defaults to False.
        return_array (bool, optional): Whether to return images as a opencv
            array. Defaults to None.
        keypoints_factory (dict, optional): Dict of all the conventions.
            Defaults to KEYPOINTS_FACTORY.

    Raises:
        FileNotFoundError: check output video path.
        FileNotFoundError: check input frame paths.

    Returns:
        Union[None, np.ndarray].
    """

    # check the input array shape, reshape to (num_frames, num_person, J, 2)
    kp2d = kp2d[..., :2].copy()
    if kp2d.ndim == 3:
        kp2d = kp2d[:, np.newaxis]
    assert kp2d.ndim == 4
    num_frames, num_person = kp2d.shape[0], kp2d.shape[1]
    # slice the input array temporally
    end = (min(num_frames - 1, end) + num_frames) % num_frames
    kp2d = kp2d[start:end + 1]

    if image_array is not None:
        origin_frames = None
        frame_list = None
        return_array = True
        input_temp_folder = None
    else:
        frame_list, input_temp_folder = update_frame_list(
            frame_list, origin_frames, img_format, start, end)

    kp2d = kp2d[:num_frames]
    # check output path
    if output_path is not None:
        output_temp_folder = _prepare_output_path(output_path, overwrite)
        # check whether temp_folder will overwrite frame_list by accident
        _check_temp_path(output_temp_folder, frame_list, overwrite)
    else:
        output_temp_folder = None

    # check data_source & mask
    if data_source not in keypoints_factory:
        raise ValueError('Wrong data_source. Should choose in'
                         f'{list(keypoints_factory.keys())}')
    if mask is not None:
        if isinstance(mask, list):
            mask = np.array(mask).reshape(-1)
        assert mask.shape == (
            len(keypoints_factory[data_source]),
        ), f'mask length should fit with keypoints number \
            {len(keypoints_factory[data_source])}'

    # search the limb connections and palettes from superset smplx
    # check and pop the pop_parts
    if pop_parts is None:
        pop_parts = []

    if disable_limbs:
        limbs_target, limbs_palette = None, None
    else:
        # *** changed by wyj ***
        limbs_target, limbs_palette = _prepare_limb_palette(
            limbs, palette, pop_parts, data_source, mask)
        # limbs_target, limbs_palette = limbs, palette
    canvas_producer = _CavasProducer(frame_list, resolution, kp2d, image_array)

    out_image_array = []
    # start plotting by frame
    for frame_index in tqdm(range(kp2d.shape[0]), disable=disable_tqdm):
        canvas, kp2d_frame = canvas_producer[frame_index]
        # start plotting by person
        for person_index in range(num_person):
            if num_person >= 2 and not disable_limbs:
                limbs_palette = get_different_colors(
                    num_person)[person_index].reshape(1, 3)
            canvas = _plot_kp2d_frame(kp2d_person=kp2d_frame[person_index],
                                      canvas=canvas,
                                      limbs=limbs_target,
                                      palette=limbs_palette,
                                      draw_bbox=draw_bbox,
                                      with_number=with_number,
                                      font_size=0.5,
                                      disable_limbs=disable_limbs)
        if with_file_name and frame_list is not None:
            h, w, _ = canvas.shape
            if frame_index <= len(frame_list) - 1:
                cv2.putText(
                    canvas, str(Path(frame_list[frame_index]).name),
                    (w // 2, h // 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5 * h / 500,
                    np.array([255, 255, 255]).astype(np.int32).tolist(), 2)
        if output_path is not None:
            # write the frame with opencv
            if frame_list is not None and check_path_suffix(
                    output_path,
                    '') and len(frame_list) >= len(canvas_producer):
                frame_path = os.path.join(output_temp_folder,
                                          Path(frame_list[frame_index]).name)
                img_format = None
            else:
                frame_path = \
                    os.path.join(output_temp_folder, f'{frame_index:06d}.png')
                img_format = '%06d.png'
            cv2.imwrite(frame_path, canvas)
        if return_array:
            out_image_array.append(canvas[None])

    if input_temp_folder is not None:
        shutil.rmtree(input_temp_folder)
    # convert frames to video
    if output_path is not None:
        if check_path_suffix(output_path, ['.mp4']):
            images_to_video(input_folder=output_temp_folder,
                            output_path=output_path,
                            remove_raw_file=remove_raw_file,
                            img_format=img_format,
                            fps=fps)

    if return_array:
        out_image_array = np.concatenate(out_image_array)
        return out_image_array