Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
from mmcv.cnn.bricks import Conv2dAdaptivePadding | |
def test_conv2d_samepadding(): | |
# test Conv2dAdaptivePadding with stride=1 | |
inputs = torch.rand((1, 3, 28, 28)) | |
conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=1) | |
output = conv(inputs) | |
assert output.shape == inputs.shape | |
inputs = torch.rand((1, 3, 13, 13)) | |
conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=1) | |
output = conv(inputs) | |
assert output.shape == inputs.shape | |
# test Conv2dAdaptivePadding with stride=2 | |
inputs = torch.rand((1, 3, 28, 28)) | |
conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=2) | |
output = conv(inputs) | |
assert output.shape == torch.Size([1, 3, 14, 14]) | |
inputs = torch.rand((1, 3, 13, 13)) | |
conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=2) | |
output = conv(inputs) | |
assert output.shape == torch.Size([1, 3, 7, 7]) | |