File size: 948 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright (c) OpenMMLab. All rights reserved.
import torch

from mmcv.cnn.bricks import Conv2dAdaptivePadding


def test_conv2d_samepadding():
    # test Conv2dAdaptivePadding with stride=1
    inputs = torch.rand((1, 3, 28, 28))
    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=1)
    output = conv(inputs)
    assert output.shape == inputs.shape

    inputs = torch.rand((1, 3, 13, 13))
    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=1)
    output = conv(inputs)
    assert output.shape == inputs.shape

    # test Conv2dAdaptivePadding with stride=2
    inputs = torch.rand((1, 3, 28, 28))
    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=2)
    output = conv(inputs)
    assert output.shape == torch.Size([1, 3, 14, 14])

    inputs = torch.rand((1, 3, 13, 13))
    conv = Conv2dAdaptivePadding(3, 3, kernel_size=3, stride=2)
    output = conv(inputs)
    assert output.shape == torch.Size([1, 3, 7, 7])