ttxskk
update
d7e58f0
raw
history blame
34.1 kB
from typing import List, Tuple, Union
import numpy as np
import torch
from mmcv.runner import build_optimizer
from detrsmpl.core.cameras import build_cameras
from detrsmpl.core.conventions.keypoints_mapping import (
get_keypoint_idx,
get_keypoint_idxs_by_part,
)
from ..body_models.builder import build_body_model
from ..losses.builder import build_loss
class OptimizableParameters():
"""Collects parameters for optimization."""
def __init__(self):
self.opt_params = []
def set_param(self, fit_param: torch.Tensor, param: torch.Tensor) -> None:
"""Set requires_grad and collect parameters for optimization.
Args:
fit_param: whether to optimize this body model parameter
param: body model parameter
Returns:
None
"""
if fit_param:
param.requires_grad = True
self.opt_params.append(param)
else:
param.requires_grad = False
def parameters(self) -> List[torch.Tensor]:
"""Returns parameters. Compatible with mmcv's build_parameters()
Returns:
opt_params: a list of body model parameters for optimization
"""
return self.opt_params
class SMPLify(object):
"""Re-implementation of SMPLify with extended features.
- video input
- 3D keypoints
"""
def __init__(self,
body_model: Union[dict, torch.nn.Module],
num_epochs: int = 20,
camera: Union[dict, torch.nn.Module] = None,
img_res: Union[Tuple[int], int] = 224,
stages: dict = None,
optimizer: dict = None,
keypoints2d_loss: dict = None,
keypoints3d_loss: dict = None,
shape_prior_loss: dict = None,
joint_prior_loss: dict = None,
smooth_loss: dict = None,
pose_prior_loss: dict = None,
pose_reg_loss: dict = None,
limb_length_loss: dict = None,
use_one_betas_per_video: bool = False,
ignore_keypoints: List[int] = None,
device=torch.device(
'cuda' if torch.cuda.is_available() else 'cpu'),
verbose: bool = False) -> None:
"""
Args:
body_model: config or an object of body model.
num_epochs: number of epochs of registration
camera: config or an object of camera
img_res: image resolution. If tuple, values are (width, height)
stages: config of registration stages
optimizer: config of optimizer
keypoints2d_loss: config of keypoint 2D loss
keypoints3d_loss: config of keypoint 3D loss
shape_prior_loss: config of shape prior loss.
Used to prevent extreme shapes.
joint_prior_loss: config of joint prior loss.
Used to prevent large joint rotations.
smooth_loss: config of smooth loss.
Used to prevent jittering by temporal smoothing.
pose_prior_loss: config of pose prior loss.
Used to prevent unnatural pose.
pose_reg_loss: config of pose regularizer loss.
Used to prevent pose being too large.
limb_length_loss: config of limb length loss.
Used to prevent the change of body shape.
use_one_betas_per_video: whether to use the same beta parameters
for all frames in a single video sequence.
ignore_keypoints: list of keypoint names to ignore in keypoint
loss computation
device: torch device
verbose: whether to print information during registration
Returns:
None
"""
self.use_one_betas_per_video = use_one_betas_per_video
self.num_epochs = num_epochs
self.img_res = img_res
self.device = device
self.stage_config = stages
self.optimizer = optimizer
self.keypoints2d_mse_loss = build_loss(keypoints2d_loss)
self.keypoints3d_mse_loss = build_loss(keypoints3d_loss)
self.shape_prior_loss = build_loss(shape_prior_loss)
self.joint_prior_loss = build_loss(joint_prior_loss)
self.smooth_loss = build_loss(smooth_loss)
self.pose_prior_loss = build_loss(pose_prior_loss)
self.pose_reg_loss = build_loss(pose_reg_loss)
self.limb_length_loss = build_loss(limb_length_loss)
if self.joint_prior_loss is not None:
self.joint_prior_loss = self.joint_prior_loss.to(self.device)
if self.smooth_loss is not None:
self.smooth_loss = self.smooth_loss.to(self.device)
if self.pose_prior_loss is not None:
self.pose_prior_loss = self.pose_prior_loss.to(self.device)
if self.pose_reg_loss is not None:
self.pose_reg_loss = self.pose_reg_loss.to(self.device)
if self.limb_length_loss is not None:
self.limb_length_loss = self.limb_length_loss.to(self.device)
# initialize body model
if isinstance(body_model, dict):
self.body_model = build_body_model(body_model).to(self.device)
elif isinstance(body_model, torch.nn.Module):
self.body_model = body_model.to(self.device)
else:
raise TypeError(f'body_model should be either dict or '
f'torch.nn.Module, but got {type(body_model)}')
# initialize camera
if camera is not None:
if isinstance(camera, dict):
self.camera = build_cameras(camera).to(self.device)
elif isinstance(camera, torch.nn.Module):
self.camera = camera.to(device)
else:
raise TypeError(f'camera should be either dict or '
f'torch.nn.Module, but got {type(camera)}')
self.ignore_keypoints = ignore_keypoints
self.verbose = verbose
self._set_keypoint_idxs()
def __call__(self,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
init_global_orient: torch.Tensor = None,
init_transl: torch.Tensor = None,
init_body_pose: torch.Tensor = None,
init_betas: torch.Tensor = None,
return_verts: bool = False,
return_joints: bool = False,
return_full_pose: bool = False,
return_losses: bool = False) -> dict:
"""Run registration.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Provide only keypoints2d or keypoints3d, not both.
Args:
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
init_global_orient: initial global_orient of shape (B, 3)
init_transl: initial transl of shape (B, 3)
init_body_pose: initial body_pose of shape (B, 69)
init_betas: initial betas of shape (B, D)
return_verts: whether to return vertices
return_joints: whether to return joints
return_full_pose: whether to return full pose
return_losses: whether to return loss dict
Returns:
ret: a dictionary that includes body model parameters,
and optional attributes such as vertices and joints
"""
assert keypoints2d is not None or keypoints3d is not None, \
'Neither of 2D nor 3D keypoints are provided.'
assert not (keypoints2d is not None and keypoints3d is not None), \
'Do not provide both 2D and 3D keypoints.'
batch_size = keypoints2d.shape[0] if keypoints2d is not None \
else keypoints3d.shape[0]
global_orient = self._match_init_batch_size(
init_global_orient, self.body_model.global_orient, batch_size)
transl = self._match_init_batch_size(init_transl,
self.body_model.transl,
batch_size)
body_pose = self._match_init_batch_size(init_body_pose,
self.body_model.body_pose,
batch_size)
if init_betas is None and self.use_one_betas_per_video:
betas = torch.zeros(1, self.body_model.betas.shape[-1]).to(
self.device)
else:
betas = self._match_init_batch_size(init_betas,
self.body_model.betas,
batch_size)
for i in range(self.num_epochs):
for stage_idx, stage_config in enumerate(self.stage_config):
if self.verbose:
print(f'epoch {i}, stage {stage_idx}')
self._optimize_stage(
global_orient=global_orient,
transl=transl,
body_pose=body_pose,
betas=betas,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
**stage_config,
)
# collate results
ret = {
'global_orient': global_orient,
'transl': transl,
'body_pose': body_pose,
'betas': betas
}
if return_verts or return_joints or \
return_full_pose or return_losses:
eval_ret = self.evaluate(
global_orient=global_orient,
body_pose=body_pose,
betas=betas,
transl=transl,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
return_verts=return_verts,
return_full_pose=return_full_pose,
return_joints=return_joints,
reduction_override='none' # sample-wise loss
)
if return_verts:
ret['vertices'] = eval_ret['vertices']
if return_joints:
ret['joints'] = eval_ret['joints']
if return_full_pose:
ret['full_pose'] = eval_ret['full_pose']
if return_losses:
for k in eval_ret.keys():
if 'loss' in k:
ret[k] = eval_ret[k]
for k, v in ret.items():
if isinstance(v, torch.Tensor):
ret[k] = v.detach().clone()
return ret
def _optimize_stage(self,
betas: torch.Tensor,
body_pose: torch.Tensor,
global_orient: torch.Tensor,
transl: torch.Tensor,
fit_global_orient: bool = True,
fit_transl: bool = True,
fit_body_pose: bool = True,
fit_betas: bool = True,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints2d_weight: float = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
keypoints3d_weight: float = None,
shape_prior_weight: float = None,
joint_prior_weight: float = None,
smooth_loss_weight: float = None,
pose_prior_weight: float = None,
pose_reg_weight: float = None,
limb_length_weight: float = None,
joint_weights: dict = {},
num_iter: int = 1,
ftol: float = 1e-4,
**kwargs) -> None:
"""Optimize a stage of body model parameters according to
configuration.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
betas: shape (B, D)
body_pose: shape (B, 69)
global_orient: shape (B, 3)
transl: shape (B, 3)
fit_global_orient: whether to optimize global_orient
fit_transl: whether to optimize transl
fit_body_pose: whether to optimize body_pose
fit_betas: whether to optimize betas
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints2d_weight: weight of 2D keypoint loss
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
keypoints3d_weight: weight of 3D keypoint loss
shape_prior_weight: weight of shape prior loss
joint_prior_weight: weight of joint prior loss
smooth_loss_weight: weight of smooth loss
pose_prior_weight: weight of pose prior loss
pose_reg_weight: weight of pose regularization loss
limb_length_weight: weight of limb length loss
joint_weights: per joint weight of shape (K, )
num_iter: number of iterations
ftol: early stop tolerance for relative change in loss
Returns:
None
"""
parameters = OptimizableParameters()
parameters.set_param(fit_global_orient, global_orient)
parameters.set_param(fit_transl, transl)
parameters.set_param(fit_body_pose, body_pose)
parameters.set_param(fit_betas, betas)
optimizer = build_optimizer(parameters, self.optimizer)
pre_loss = None
for iter_idx in range(num_iter):
def closure():
optimizer.zero_grad()
betas_video = self._expand_betas(body_pose.shape[0], betas)
loss_dict = self.evaluate(
global_orient=global_orient,
body_pose=body_pose,
betas=betas_video,
transl=transl,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints2d_weight=keypoints2d_weight,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
keypoints3d_weight=keypoints3d_weight,
joint_prior_weight=joint_prior_weight,
shape_prior_weight=shape_prior_weight,
smooth_loss_weight=smooth_loss_weight,
pose_prior_weight=pose_prior_weight,
pose_reg_weight=pose_reg_weight,
limb_length_weight=limb_length_weight,
joint_weights=joint_weights)
loss = loss_dict['total_loss']
loss.backward()
return loss
loss = optimizer.step(closure)
if iter_idx > 0 and pre_loss is not None and ftol > 0:
loss_rel_change = self._compute_relative_change(
pre_loss, loss.item())
if loss_rel_change < ftol:
if self.verbose:
print(f'[ftol={ftol}] Early stop at {iter_idx} iter!')
break
pre_loss = loss.item()
def evaluate(
self,
betas: torch.Tensor = None,
body_pose: torch.Tensor = None,
global_orient: torch.Tensor = None,
transl: torch.Tensor = None,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints2d_weight: float = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
keypoints3d_weight: float = None,
shape_prior_weight: float = None,
joint_prior_weight: float = None,
smooth_loss_weight: float = None,
pose_prior_weight: float = None,
pose_reg_weight: float = None,
limb_length_weight: float = None,
joint_weights: dict = {},
return_verts: bool = False,
return_full_pose: bool = False,
return_joints: bool = False,
reduction_override: str = None,
) -> dict:
"""Evaluate fitted parameters through loss computation. This function
serves two purposes: 1) internally, for loss backpropagation 2)
externally, for fitting quality evaluation.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
betas: shape (B, D)
body_pose: shape (B, 69)
global_orient: shape (B, 3)
transl: shape (B, 3)
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints2d_weight: weight of 2D keypoint loss
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
keypoints3d_weight: weight of 3D keypoint loss
shape_prior_weight: weight of shape prior loss
joint_prior_weight: weight of joint prior loss
smooth_loss_weight: weight of smooth loss
pose_prior_weight: weight of pose prior loss
pose_reg_weight: weight of pose regularization loss
limb_length_weight: weight of limb length loss
joint_weights: per joint weight of shape (K, )
return_verts: whether to return vertices
return_joints: whether to return joints
return_full_pose: whether to return full pose
reduction_override: reduction method, e.g., 'none', 'sum', 'mean'
Returns:
ret: a dictionary that includes body model parameters,
and optional attributes such as vertices and joints
"""
ret = {}
body_model_output = self.body_model(
global_orient=global_orient,
body_pose=body_pose,
betas=betas,
transl=transl,
return_verts=return_verts,
return_full_pose=return_full_pose)
model_joints = body_model_output['joints']
model_joint_mask = body_model_output['joint_mask']
loss_dict = self._compute_loss(
model_joints,
model_joint_mask,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints2d_weight=keypoints2d_weight,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
keypoints3d_weight=keypoints3d_weight,
joint_prior_weight=joint_prior_weight,
shape_prior_weight=shape_prior_weight,
smooth_loss_weight=smooth_loss_weight,
pose_prior_weight=pose_prior_weight,
pose_reg_weight=pose_reg_weight,
limb_length_weight=limb_length_weight,
joint_weights=joint_weights,
reduction_override=reduction_override,
global_orient=global_orient,
body_pose=body_pose,
betas=betas)
ret.update(loss_dict)
if return_verts:
ret['vertices'] = body_model_output['vertices']
if return_full_pose:
ret['full_pose'] = body_model_output['full_pose']
if return_joints:
ret['joints'] = model_joints
return ret
def _compute_loss(self,
model_joints: torch.Tensor,
model_joint_conf: torch.Tensor,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints2d_weight: float = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
keypoints3d_weight: float = None,
shape_prior_weight: float = None,
joint_prior_weight: float = None,
smooth_loss_weight: float = None,
pose_prior_weight: float = None,
pose_reg_weight: float = None,
limb_length_weight: float = None,
joint_weights: dict = {},
reduction_override: str = None,
global_orient: torch.Tensor = None,
body_pose: torch.Tensor = None,
betas: torch.Tensor = None):
"""Loss computation.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
model_joints: 3D joints regressed from body model of shape (B, K)
model_joint_conf: 3D joint confidence of shape (B, K). It is
normally all 1, except for zero-pads due to convert_kps in
the SMPL wrapper.
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints2d_weight: weight of 2D keypoint loss
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
keypoints3d_weight: weight of 3D keypoint loss
shape_prior_weight: weight of shape prior loss
joint_prior_weight: weight of joint prior loss
smooth_loss_weight: weight of smooth loss
pose_prior_weight: weight of pose prior loss
joint_weights: per joint weight of shape (K, )
reduction_override: reduction method, e.g., 'none', 'sum', 'mean'
body_pose: shape (B, 69), for loss computation
betas: shape (B, D), for loss computation
Returns:
losses: a dict that contains all losses
"""
losses = {}
weight = self._get_weight(**joint_weights)
# 2D keypoint loss
if keypoints2d is not None and not self._skip_loss(
self.keypoints2d_mse_loss, keypoints2d_weight):
# bs = model_joints.shape[0]
# projected_joints = perspective_projection(
# model_joints,
# torch.eye(3).expand((bs, 3, 3)).to(model_joints.device),
# torch.zeros((bs, 3)).to(model_joints.device), 5000.0,
# torch.Tensor([self.img_res / 2,
# self.img_res / 2]).to(model_joints.device))
projected_joints_xyd = self.camera.transform_points_screen(
model_joints)
projected_joints = projected_joints_xyd[..., :2]
# normalize keypoints to [-1,1]
projected_joints = 2 * projected_joints / (self.img_res - 1) - 1
keypoints2d = 2 * keypoints2d / (self.img_res - 1) - 1
keypoint2d_loss = self.keypoints2d_mse_loss(
pred=projected_joints,
pred_conf=model_joint_conf,
target=keypoints2d,
target_conf=keypoints2d_conf,
keypoint_weight=weight,
loss_weight_override=keypoints2d_weight,
reduction_override=reduction_override)
losses['keypoint2d_loss'] = keypoint2d_loss
# 3D keypoint loss
if keypoints3d is not None and not self._skip_loss(
self.keypoints3d_mse_loss, keypoints3d_weight):
keypoints3d_loss = self.keypoints3d_mse_loss(
pred=model_joints,
pred_conf=model_joint_conf,
target=keypoints3d,
target_conf=keypoints3d_conf,
keypoint_weight=weight,
loss_weight_override=keypoints3d_weight,
reduction_override=reduction_override)
losses['keypoints3d_loss'] = keypoints3d_loss
# regularizer to prevent betas from taking large values
if not self._skip_loss(self.shape_prior_loss, shape_prior_weight):
shape_prior_loss = self.shape_prior_loss(
betas=betas,
loss_weight_override=shape_prior_weight,
reduction_override=reduction_override)
losses['shape_prior_loss'] = shape_prior_loss
# joint prior loss
if not self._skip_loss(self.joint_prior_loss, joint_prior_weight):
joint_prior_loss = self.joint_prior_loss(
body_pose=body_pose,
loss_weight_override=joint_prior_weight,
reduction_override=reduction_override)
losses['joint_prior_loss'] = joint_prior_loss
# smooth body loss
if not self._skip_loss(self.smooth_loss, smooth_loss_weight):
smooth_loss = self.smooth_loss(
body_pose=body_pose,
loss_weight_override=smooth_loss_weight,
reduction_override=reduction_override)
losses['smooth_loss'] = smooth_loss
# pose prior loss
if not self._skip_loss(self.pose_prior_loss, pose_prior_weight):
pose_prior_loss = self.pose_prior_loss(
body_pose=body_pose,
loss_weight_override=pose_prior_weight,
reduction_override=reduction_override)
losses['pose_prior_loss'] = pose_prior_loss
# pose reg loss
if not self._skip_loss(self.pose_reg_loss, pose_reg_weight):
pose_reg_loss = self.pose_reg_loss(
body_pose=body_pose,
loss_weight_override=pose_reg_weight,
reduction_override=reduction_override)
losses['pose_reg_loss'] = pose_reg_loss
# limb length loss
if not self._skip_loss(self.limb_length_loss, limb_length_weight):
limb_length_loss = self.limb_length_loss(
pred=model_joints,
pred_conf=model_joint_conf,
target=keypoints3d,
target_conf=keypoints3d_conf,
loss_weight_override=limb_length_weight,
reduction_override=reduction_override)
losses['limb_length_loss'] = limb_length_loss
if self.verbose:
msg = ''
for loss_name, loss in losses.items():
msg += f'{loss_name}={loss.mean().item():.6f}, '
if self.verbose:
print(msg.strip(', '))
total_loss = 0
for loss_name, loss in losses.items():
if loss.ndim == 3:
total_loss = total_loss + loss.sum(dim=(2, 1))
elif loss.ndim == 2:
total_loss = total_loss + loss.sum(dim=-1)
else:
total_loss = total_loss + loss
losses['total_loss'] = total_loss
return losses
def _match_init_batch_size(self, init_param: torch.Tensor,
init_param_body_model: torch.Tensor,
batch_size: int) -> torch.Tensor:
"""A helper function to ensure body model parameters have the same
batch size as the input keypoints.
Args:
init_param: input initial body model parameters, may be None
init_param_body_model: initial body model parameters from the
body model
batch_size: batch size of keypoints
Returns:
param: body model parameters with batch size aligned
"""
# param takes init values
param = init_param.detach().clone() \
if init_param is not None \
else init_param_body_model.detach().clone()
# expand batch dimension to match batch size
param_batch_size = param.shape[0]
if param_batch_size != batch_size:
if param_batch_size == 1:
param = param.repeat(batch_size, *[1] * (param.ndim - 1))
else:
raise ValueError('Init param does not match the batch size of '
'keypoints, and is not 1.')
# shape check
assert param.shape[0] == batch_size
assert param.shape[1:] == init_param_body_model.shape[1:], \
f'Shape mismatch: {param.shape} vs {init_param_body_model.shape}'
return param
def _set_keypoint_idxs(self) -> None:
"""Set keypoint indices to 1) body parts to be assigned different
weights 2) be ignored for keypoint loss computation.
Returns:
None
"""
convention = self.body_model.keypoint_dst
# obtain ignore keypoint indices
if self.ignore_keypoints is not None:
self.ignore_keypoint_idxs = []
for keypoint_name in self.ignore_keypoints:
keypoint_idx = get_keypoint_idx(
keypoint_name, convention=convention)
if keypoint_idx != -1:
self.ignore_keypoint_idxs.append(keypoint_idx)
# obtain body part keypoint indices
shoulder_keypoint_idxs = get_keypoint_idxs_by_part(
'shoulder', convention=convention)
hip_keypoint_idxs = get_keypoint_idxs_by_part(
'hip', convention=convention)
self.shoulder_hip_keypoint_idxs = [
*shoulder_keypoint_idxs, *hip_keypoint_idxs
]
def _get_weight(self,
use_shoulder_hip_only: bool = False,
body_weight: float = 1.0) -> torch.Tensor:
"""Get per keypoint weight.
Notes:
K: number of keypoints
Args:
use_shoulder_hip_only: whether to use only shoulder and hip
keypoints for loss computation. This is useful in the
warming-up stage to find a reasonably good initialization.
body_weight: weight of body keypoints. Body part segmentation
definition is included in the HumanData convention.
Returns:
weight: per keypoint weight tensor of shape (K)
"""
num_keypoint = self.body_model.num_joints
if use_shoulder_hip_only:
weight = torch.zeros([num_keypoint]).to(self.device)
weight[self.shoulder_hip_keypoint_idxs] = 1.0
weight = weight * body_weight
else:
weight = torch.ones([num_keypoint]).to(self.device)
weight = weight * body_weight
if hasattr(self, 'ignore_keypoint_idxs'):
weight[self.ignore_keypoint_idxs] = 0.0
return weight
def _expand_betas(self, batch_size, betas):
"""A helper function to expand the betas's first dim to match batch
size such that the same beta parameters can be used for all frames in a
video sequence.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
batch_size: batch size
betas: shape (B, D)
Returns:
betas_video: expanded betas
"""
# no expansion needed
if batch_size == betas.shape[0]:
return betas
# first dim is 1
else:
feat_dim = betas.shape[-1]
betas_video = betas.view(1, feat_dim).expand(batch_size, feat_dim)
return betas_video
@staticmethod
def _compute_relative_change(pre_v, cur_v):
"""Compute relative loss change. If relative change is small enough, we
can apply early stop to accelerate the optimization. (1) When one of
the value is larger than 1, we calculate the relative change by diving
their max value. (2) When both values are smaller than 1, it degrades
to absolute change. Intuitively, if two values are small and close,
dividing the difference by the max value may yield a large value.
Args:
pre_v: previous value
cur_v: current value
Returns:
float: relative change
"""
return np.abs(pre_v - cur_v) / max([np.abs(pre_v), np.abs(cur_v), 1])
@staticmethod
def _skip_loss(loss, loss_weight_override):
"""Whether to skip loss computation. If loss is None, it will directly
skip the loss to avoid RuntimeError. If loss is not None, the table
below shows the return value. If the return value is True, it means the
computation of loss can be skipped. As the result is 0 even if it is
calculated, we can skip it to save computational cost.
| loss.loss_weight | loss_weight_override | returns |
| ---------------- | -------------------- | ------- |
| == 0 | None | True |
| != 0 | None | False |
| == 0 | == 0 | True |
| != 0 | == 0 | True |
| == 0 | != 0 | False |
| != 0 | != 0 | False |
Args:
loss: loss is an object that has attribute loss_weight.
loss.loss_weight is assigned when loss is initialized.
loss_weight_override: loss_weight used to override loss.loss_weight
Returns:
bool: True means skipping loss computation, and vice versa
"""
if (loss is None) or (loss.loss_weight == 0 and loss_weight_override is
None) or (loss_weight_override == 0):
return True
return False