Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 34,097 Bytes
d7e58f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
from typing import List, Tuple, Union
import numpy as np
import torch
from mmcv.runner import build_optimizer
from detrsmpl.core.cameras import build_cameras
from detrsmpl.core.conventions.keypoints_mapping import (
get_keypoint_idx,
get_keypoint_idxs_by_part,
)
from ..body_models.builder import build_body_model
from ..losses.builder import build_loss
class OptimizableParameters():
"""Collects parameters for optimization."""
def __init__(self):
self.opt_params = []
def set_param(self, fit_param: torch.Tensor, param: torch.Tensor) -> None:
"""Set requires_grad and collect parameters for optimization.
Args:
fit_param: whether to optimize this body model parameter
param: body model parameter
Returns:
None
"""
if fit_param:
param.requires_grad = True
self.opt_params.append(param)
else:
param.requires_grad = False
def parameters(self) -> List[torch.Tensor]:
"""Returns parameters. Compatible with mmcv's build_parameters()
Returns:
opt_params: a list of body model parameters for optimization
"""
return self.opt_params
class SMPLify(object):
"""Re-implementation of SMPLify with extended features.
- video input
- 3D keypoints
"""
def __init__(self,
body_model: Union[dict, torch.nn.Module],
num_epochs: int = 20,
camera: Union[dict, torch.nn.Module] = None,
img_res: Union[Tuple[int], int] = 224,
stages: dict = None,
optimizer: dict = None,
keypoints2d_loss: dict = None,
keypoints3d_loss: dict = None,
shape_prior_loss: dict = None,
joint_prior_loss: dict = None,
smooth_loss: dict = None,
pose_prior_loss: dict = None,
pose_reg_loss: dict = None,
limb_length_loss: dict = None,
use_one_betas_per_video: bool = False,
ignore_keypoints: List[int] = None,
device=torch.device(
'cuda' if torch.cuda.is_available() else 'cpu'),
verbose: bool = False) -> None:
"""
Args:
body_model: config or an object of body model.
num_epochs: number of epochs of registration
camera: config or an object of camera
img_res: image resolution. If tuple, values are (width, height)
stages: config of registration stages
optimizer: config of optimizer
keypoints2d_loss: config of keypoint 2D loss
keypoints3d_loss: config of keypoint 3D loss
shape_prior_loss: config of shape prior loss.
Used to prevent extreme shapes.
joint_prior_loss: config of joint prior loss.
Used to prevent large joint rotations.
smooth_loss: config of smooth loss.
Used to prevent jittering by temporal smoothing.
pose_prior_loss: config of pose prior loss.
Used to prevent unnatural pose.
pose_reg_loss: config of pose regularizer loss.
Used to prevent pose being too large.
limb_length_loss: config of limb length loss.
Used to prevent the change of body shape.
use_one_betas_per_video: whether to use the same beta parameters
for all frames in a single video sequence.
ignore_keypoints: list of keypoint names to ignore in keypoint
loss computation
device: torch device
verbose: whether to print information during registration
Returns:
None
"""
self.use_one_betas_per_video = use_one_betas_per_video
self.num_epochs = num_epochs
self.img_res = img_res
self.device = device
self.stage_config = stages
self.optimizer = optimizer
self.keypoints2d_mse_loss = build_loss(keypoints2d_loss)
self.keypoints3d_mse_loss = build_loss(keypoints3d_loss)
self.shape_prior_loss = build_loss(shape_prior_loss)
self.joint_prior_loss = build_loss(joint_prior_loss)
self.smooth_loss = build_loss(smooth_loss)
self.pose_prior_loss = build_loss(pose_prior_loss)
self.pose_reg_loss = build_loss(pose_reg_loss)
self.limb_length_loss = build_loss(limb_length_loss)
if self.joint_prior_loss is not None:
self.joint_prior_loss = self.joint_prior_loss.to(self.device)
if self.smooth_loss is not None:
self.smooth_loss = self.smooth_loss.to(self.device)
if self.pose_prior_loss is not None:
self.pose_prior_loss = self.pose_prior_loss.to(self.device)
if self.pose_reg_loss is not None:
self.pose_reg_loss = self.pose_reg_loss.to(self.device)
if self.limb_length_loss is not None:
self.limb_length_loss = self.limb_length_loss.to(self.device)
# initialize body model
if isinstance(body_model, dict):
self.body_model = build_body_model(body_model).to(self.device)
elif isinstance(body_model, torch.nn.Module):
self.body_model = body_model.to(self.device)
else:
raise TypeError(f'body_model should be either dict or '
f'torch.nn.Module, but got {type(body_model)}')
# initialize camera
if camera is not None:
if isinstance(camera, dict):
self.camera = build_cameras(camera).to(self.device)
elif isinstance(camera, torch.nn.Module):
self.camera = camera.to(device)
else:
raise TypeError(f'camera should be either dict or '
f'torch.nn.Module, but got {type(camera)}')
self.ignore_keypoints = ignore_keypoints
self.verbose = verbose
self._set_keypoint_idxs()
def __call__(self,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
init_global_orient: torch.Tensor = None,
init_transl: torch.Tensor = None,
init_body_pose: torch.Tensor = None,
init_betas: torch.Tensor = None,
return_verts: bool = False,
return_joints: bool = False,
return_full_pose: bool = False,
return_losses: bool = False) -> dict:
"""Run registration.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Provide only keypoints2d or keypoints3d, not both.
Args:
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
init_global_orient: initial global_orient of shape (B, 3)
init_transl: initial transl of shape (B, 3)
init_body_pose: initial body_pose of shape (B, 69)
init_betas: initial betas of shape (B, D)
return_verts: whether to return vertices
return_joints: whether to return joints
return_full_pose: whether to return full pose
return_losses: whether to return loss dict
Returns:
ret: a dictionary that includes body model parameters,
and optional attributes such as vertices and joints
"""
assert keypoints2d is not None or keypoints3d is not None, \
'Neither of 2D nor 3D keypoints are provided.'
assert not (keypoints2d is not None and keypoints3d is not None), \
'Do not provide both 2D and 3D keypoints.'
batch_size = keypoints2d.shape[0] if keypoints2d is not None \
else keypoints3d.shape[0]
global_orient = self._match_init_batch_size(
init_global_orient, self.body_model.global_orient, batch_size)
transl = self._match_init_batch_size(init_transl,
self.body_model.transl,
batch_size)
body_pose = self._match_init_batch_size(init_body_pose,
self.body_model.body_pose,
batch_size)
if init_betas is None and self.use_one_betas_per_video:
betas = torch.zeros(1, self.body_model.betas.shape[-1]).to(
self.device)
else:
betas = self._match_init_batch_size(init_betas,
self.body_model.betas,
batch_size)
for i in range(self.num_epochs):
for stage_idx, stage_config in enumerate(self.stage_config):
if self.verbose:
print(f'epoch {i}, stage {stage_idx}')
self._optimize_stage(
global_orient=global_orient,
transl=transl,
body_pose=body_pose,
betas=betas,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
**stage_config,
)
# collate results
ret = {
'global_orient': global_orient,
'transl': transl,
'body_pose': body_pose,
'betas': betas
}
if return_verts or return_joints or \
return_full_pose or return_losses:
eval_ret = self.evaluate(
global_orient=global_orient,
body_pose=body_pose,
betas=betas,
transl=transl,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
return_verts=return_verts,
return_full_pose=return_full_pose,
return_joints=return_joints,
reduction_override='none' # sample-wise loss
)
if return_verts:
ret['vertices'] = eval_ret['vertices']
if return_joints:
ret['joints'] = eval_ret['joints']
if return_full_pose:
ret['full_pose'] = eval_ret['full_pose']
if return_losses:
for k in eval_ret.keys():
if 'loss' in k:
ret[k] = eval_ret[k]
for k, v in ret.items():
if isinstance(v, torch.Tensor):
ret[k] = v.detach().clone()
return ret
def _optimize_stage(self,
betas: torch.Tensor,
body_pose: torch.Tensor,
global_orient: torch.Tensor,
transl: torch.Tensor,
fit_global_orient: bool = True,
fit_transl: bool = True,
fit_body_pose: bool = True,
fit_betas: bool = True,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints2d_weight: float = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
keypoints3d_weight: float = None,
shape_prior_weight: float = None,
joint_prior_weight: float = None,
smooth_loss_weight: float = None,
pose_prior_weight: float = None,
pose_reg_weight: float = None,
limb_length_weight: float = None,
joint_weights: dict = {},
num_iter: int = 1,
ftol: float = 1e-4,
**kwargs) -> None:
"""Optimize a stage of body model parameters according to
configuration.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
betas: shape (B, D)
body_pose: shape (B, 69)
global_orient: shape (B, 3)
transl: shape (B, 3)
fit_global_orient: whether to optimize global_orient
fit_transl: whether to optimize transl
fit_body_pose: whether to optimize body_pose
fit_betas: whether to optimize betas
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints2d_weight: weight of 2D keypoint loss
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
keypoints3d_weight: weight of 3D keypoint loss
shape_prior_weight: weight of shape prior loss
joint_prior_weight: weight of joint prior loss
smooth_loss_weight: weight of smooth loss
pose_prior_weight: weight of pose prior loss
pose_reg_weight: weight of pose regularization loss
limb_length_weight: weight of limb length loss
joint_weights: per joint weight of shape (K, )
num_iter: number of iterations
ftol: early stop tolerance for relative change in loss
Returns:
None
"""
parameters = OptimizableParameters()
parameters.set_param(fit_global_orient, global_orient)
parameters.set_param(fit_transl, transl)
parameters.set_param(fit_body_pose, body_pose)
parameters.set_param(fit_betas, betas)
optimizer = build_optimizer(parameters, self.optimizer)
pre_loss = None
for iter_idx in range(num_iter):
def closure():
optimizer.zero_grad()
betas_video = self._expand_betas(body_pose.shape[0], betas)
loss_dict = self.evaluate(
global_orient=global_orient,
body_pose=body_pose,
betas=betas_video,
transl=transl,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints2d_weight=keypoints2d_weight,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
keypoints3d_weight=keypoints3d_weight,
joint_prior_weight=joint_prior_weight,
shape_prior_weight=shape_prior_weight,
smooth_loss_weight=smooth_loss_weight,
pose_prior_weight=pose_prior_weight,
pose_reg_weight=pose_reg_weight,
limb_length_weight=limb_length_weight,
joint_weights=joint_weights)
loss = loss_dict['total_loss']
loss.backward()
return loss
loss = optimizer.step(closure)
if iter_idx > 0 and pre_loss is not None and ftol > 0:
loss_rel_change = self._compute_relative_change(
pre_loss, loss.item())
if loss_rel_change < ftol:
if self.verbose:
print(f'[ftol={ftol}] Early stop at {iter_idx} iter!')
break
pre_loss = loss.item()
def evaluate(
self,
betas: torch.Tensor = None,
body_pose: torch.Tensor = None,
global_orient: torch.Tensor = None,
transl: torch.Tensor = None,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints2d_weight: float = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
keypoints3d_weight: float = None,
shape_prior_weight: float = None,
joint_prior_weight: float = None,
smooth_loss_weight: float = None,
pose_prior_weight: float = None,
pose_reg_weight: float = None,
limb_length_weight: float = None,
joint_weights: dict = {},
return_verts: bool = False,
return_full_pose: bool = False,
return_joints: bool = False,
reduction_override: str = None,
) -> dict:
"""Evaluate fitted parameters through loss computation. This function
serves two purposes: 1) internally, for loss backpropagation 2)
externally, for fitting quality evaluation.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
betas: shape (B, D)
body_pose: shape (B, 69)
global_orient: shape (B, 3)
transl: shape (B, 3)
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints2d_weight: weight of 2D keypoint loss
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
keypoints3d_weight: weight of 3D keypoint loss
shape_prior_weight: weight of shape prior loss
joint_prior_weight: weight of joint prior loss
smooth_loss_weight: weight of smooth loss
pose_prior_weight: weight of pose prior loss
pose_reg_weight: weight of pose regularization loss
limb_length_weight: weight of limb length loss
joint_weights: per joint weight of shape (K, )
return_verts: whether to return vertices
return_joints: whether to return joints
return_full_pose: whether to return full pose
reduction_override: reduction method, e.g., 'none', 'sum', 'mean'
Returns:
ret: a dictionary that includes body model parameters,
and optional attributes such as vertices and joints
"""
ret = {}
body_model_output = self.body_model(
global_orient=global_orient,
body_pose=body_pose,
betas=betas,
transl=transl,
return_verts=return_verts,
return_full_pose=return_full_pose)
model_joints = body_model_output['joints']
model_joint_mask = body_model_output['joint_mask']
loss_dict = self._compute_loss(
model_joints,
model_joint_mask,
keypoints2d=keypoints2d,
keypoints2d_conf=keypoints2d_conf,
keypoints2d_weight=keypoints2d_weight,
keypoints3d=keypoints3d,
keypoints3d_conf=keypoints3d_conf,
keypoints3d_weight=keypoints3d_weight,
joint_prior_weight=joint_prior_weight,
shape_prior_weight=shape_prior_weight,
smooth_loss_weight=smooth_loss_weight,
pose_prior_weight=pose_prior_weight,
pose_reg_weight=pose_reg_weight,
limb_length_weight=limb_length_weight,
joint_weights=joint_weights,
reduction_override=reduction_override,
global_orient=global_orient,
body_pose=body_pose,
betas=betas)
ret.update(loss_dict)
if return_verts:
ret['vertices'] = body_model_output['vertices']
if return_full_pose:
ret['full_pose'] = body_model_output['full_pose']
if return_joints:
ret['joints'] = model_joints
return ret
def _compute_loss(self,
model_joints: torch.Tensor,
model_joint_conf: torch.Tensor,
keypoints2d: torch.Tensor = None,
keypoints2d_conf: torch.Tensor = None,
keypoints2d_weight: float = None,
keypoints3d: torch.Tensor = None,
keypoints3d_conf: torch.Tensor = None,
keypoints3d_weight: float = None,
shape_prior_weight: float = None,
joint_prior_weight: float = None,
smooth_loss_weight: float = None,
pose_prior_weight: float = None,
pose_reg_weight: float = None,
limb_length_weight: float = None,
joint_weights: dict = {},
reduction_override: str = None,
global_orient: torch.Tensor = None,
body_pose: torch.Tensor = None,
betas: torch.Tensor = None):
"""Loss computation.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
model_joints: 3D joints regressed from body model of shape (B, K)
model_joint_conf: 3D joint confidence of shape (B, K). It is
normally all 1, except for zero-pads due to convert_kps in
the SMPL wrapper.
keypoints2d: 2D keypoints of shape (B, K, 2)
keypoints2d_conf: 2D keypoint confidence of shape (B, K)
keypoints2d_weight: weight of 2D keypoint loss
keypoints3d: 3D keypoints of shape (B, K, 3).
keypoints3d_conf: 3D keypoint confidence of shape (B, K)
keypoints3d_weight: weight of 3D keypoint loss
shape_prior_weight: weight of shape prior loss
joint_prior_weight: weight of joint prior loss
smooth_loss_weight: weight of smooth loss
pose_prior_weight: weight of pose prior loss
joint_weights: per joint weight of shape (K, )
reduction_override: reduction method, e.g., 'none', 'sum', 'mean'
body_pose: shape (B, 69), for loss computation
betas: shape (B, D), for loss computation
Returns:
losses: a dict that contains all losses
"""
losses = {}
weight = self._get_weight(**joint_weights)
# 2D keypoint loss
if keypoints2d is not None and not self._skip_loss(
self.keypoints2d_mse_loss, keypoints2d_weight):
# bs = model_joints.shape[0]
# projected_joints = perspective_projection(
# model_joints,
# torch.eye(3).expand((bs, 3, 3)).to(model_joints.device),
# torch.zeros((bs, 3)).to(model_joints.device), 5000.0,
# torch.Tensor([self.img_res / 2,
# self.img_res / 2]).to(model_joints.device))
projected_joints_xyd = self.camera.transform_points_screen(
model_joints)
projected_joints = projected_joints_xyd[..., :2]
# normalize keypoints to [-1,1]
projected_joints = 2 * projected_joints / (self.img_res - 1) - 1
keypoints2d = 2 * keypoints2d / (self.img_res - 1) - 1
keypoint2d_loss = self.keypoints2d_mse_loss(
pred=projected_joints,
pred_conf=model_joint_conf,
target=keypoints2d,
target_conf=keypoints2d_conf,
keypoint_weight=weight,
loss_weight_override=keypoints2d_weight,
reduction_override=reduction_override)
losses['keypoint2d_loss'] = keypoint2d_loss
# 3D keypoint loss
if keypoints3d is not None and not self._skip_loss(
self.keypoints3d_mse_loss, keypoints3d_weight):
keypoints3d_loss = self.keypoints3d_mse_loss(
pred=model_joints,
pred_conf=model_joint_conf,
target=keypoints3d,
target_conf=keypoints3d_conf,
keypoint_weight=weight,
loss_weight_override=keypoints3d_weight,
reduction_override=reduction_override)
losses['keypoints3d_loss'] = keypoints3d_loss
# regularizer to prevent betas from taking large values
if not self._skip_loss(self.shape_prior_loss, shape_prior_weight):
shape_prior_loss = self.shape_prior_loss(
betas=betas,
loss_weight_override=shape_prior_weight,
reduction_override=reduction_override)
losses['shape_prior_loss'] = shape_prior_loss
# joint prior loss
if not self._skip_loss(self.joint_prior_loss, joint_prior_weight):
joint_prior_loss = self.joint_prior_loss(
body_pose=body_pose,
loss_weight_override=joint_prior_weight,
reduction_override=reduction_override)
losses['joint_prior_loss'] = joint_prior_loss
# smooth body loss
if not self._skip_loss(self.smooth_loss, smooth_loss_weight):
smooth_loss = self.smooth_loss(
body_pose=body_pose,
loss_weight_override=smooth_loss_weight,
reduction_override=reduction_override)
losses['smooth_loss'] = smooth_loss
# pose prior loss
if not self._skip_loss(self.pose_prior_loss, pose_prior_weight):
pose_prior_loss = self.pose_prior_loss(
body_pose=body_pose,
loss_weight_override=pose_prior_weight,
reduction_override=reduction_override)
losses['pose_prior_loss'] = pose_prior_loss
# pose reg loss
if not self._skip_loss(self.pose_reg_loss, pose_reg_weight):
pose_reg_loss = self.pose_reg_loss(
body_pose=body_pose,
loss_weight_override=pose_reg_weight,
reduction_override=reduction_override)
losses['pose_reg_loss'] = pose_reg_loss
# limb length loss
if not self._skip_loss(self.limb_length_loss, limb_length_weight):
limb_length_loss = self.limb_length_loss(
pred=model_joints,
pred_conf=model_joint_conf,
target=keypoints3d,
target_conf=keypoints3d_conf,
loss_weight_override=limb_length_weight,
reduction_override=reduction_override)
losses['limb_length_loss'] = limb_length_loss
if self.verbose:
msg = ''
for loss_name, loss in losses.items():
msg += f'{loss_name}={loss.mean().item():.6f}, '
if self.verbose:
print(msg.strip(', '))
total_loss = 0
for loss_name, loss in losses.items():
if loss.ndim == 3:
total_loss = total_loss + loss.sum(dim=(2, 1))
elif loss.ndim == 2:
total_loss = total_loss + loss.sum(dim=-1)
else:
total_loss = total_loss + loss
losses['total_loss'] = total_loss
return losses
def _match_init_batch_size(self, init_param: torch.Tensor,
init_param_body_model: torch.Tensor,
batch_size: int) -> torch.Tensor:
"""A helper function to ensure body model parameters have the same
batch size as the input keypoints.
Args:
init_param: input initial body model parameters, may be None
init_param_body_model: initial body model parameters from the
body model
batch_size: batch size of keypoints
Returns:
param: body model parameters with batch size aligned
"""
# param takes init values
param = init_param.detach().clone() \
if init_param is not None \
else init_param_body_model.detach().clone()
# expand batch dimension to match batch size
param_batch_size = param.shape[0]
if param_batch_size != batch_size:
if param_batch_size == 1:
param = param.repeat(batch_size, *[1] * (param.ndim - 1))
else:
raise ValueError('Init param does not match the batch size of '
'keypoints, and is not 1.')
# shape check
assert param.shape[0] == batch_size
assert param.shape[1:] == init_param_body_model.shape[1:], \
f'Shape mismatch: {param.shape} vs {init_param_body_model.shape}'
return param
def _set_keypoint_idxs(self) -> None:
"""Set keypoint indices to 1) body parts to be assigned different
weights 2) be ignored for keypoint loss computation.
Returns:
None
"""
convention = self.body_model.keypoint_dst
# obtain ignore keypoint indices
if self.ignore_keypoints is not None:
self.ignore_keypoint_idxs = []
for keypoint_name in self.ignore_keypoints:
keypoint_idx = get_keypoint_idx(
keypoint_name, convention=convention)
if keypoint_idx != -1:
self.ignore_keypoint_idxs.append(keypoint_idx)
# obtain body part keypoint indices
shoulder_keypoint_idxs = get_keypoint_idxs_by_part(
'shoulder', convention=convention)
hip_keypoint_idxs = get_keypoint_idxs_by_part(
'hip', convention=convention)
self.shoulder_hip_keypoint_idxs = [
*shoulder_keypoint_idxs, *hip_keypoint_idxs
]
def _get_weight(self,
use_shoulder_hip_only: bool = False,
body_weight: float = 1.0) -> torch.Tensor:
"""Get per keypoint weight.
Notes:
K: number of keypoints
Args:
use_shoulder_hip_only: whether to use only shoulder and hip
keypoints for loss computation. This is useful in the
warming-up stage to find a reasonably good initialization.
body_weight: weight of body keypoints. Body part segmentation
definition is included in the HumanData convention.
Returns:
weight: per keypoint weight tensor of shape (K)
"""
num_keypoint = self.body_model.num_joints
if use_shoulder_hip_only:
weight = torch.zeros([num_keypoint]).to(self.device)
weight[self.shoulder_hip_keypoint_idxs] = 1.0
weight = weight * body_weight
else:
weight = torch.ones([num_keypoint]).to(self.device)
weight = weight * body_weight
if hasattr(self, 'ignore_keypoint_idxs'):
weight[self.ignore_keypoint_idxs] = 0.0
return weight
def _expand_betas(self, batch_size, betas):
"""A helper function to expand the betas's first dim to match batch
size such that the same beta parameters can be used for all frames in a
video sequence.
Notes:
B: batch size
K: number of keypoints
D: shape dimension
Args:
batch_size: batch size
betas: shape (B, D)
Returns:
betas_video: expanded betas
"""
# no expansion needed
if batch_size == betas.shape[0]:
return betas
# first dim is 1
else:
feat_dim = betas.shape[-1]
betas_video = betas.view(1, feat_dim).expand(batch_size, feat_dim)
return betas_video
@staticmethod
def _compute_relative_change(pre_v, cur_v):
"""Compute relative loss change. If relative change is small enough, we
can apply early stop to accelerate the optimization. (1) When one of
the value is larger than 1, we calculate the relative change by diving
their max value. (2) When both values are smaller than 1, it degrades
to absolute change. Intuitively, if two values are small and close,
dividing the difference by the max value may yield a large value.
Args:
pre_v: previous value
cur_v: current value
Returns:
float: relative change
"""
return np.abs(pre_v - cur_v) / max([np.abs(pre_v), np.abs(cur_v), 1])
@staticmethod
def _skip_loss(loss, loss_weight_override):
"""Whether to skip loss computation. If loss is None, it will directly
skip the loss to avoid RuntimeError. If loss is not None, the table
below shows the return value. If the return value is True, it means the
computation of loss can be skipped. As the result is 0 even if it is
calculated, we can skip it to save computational cost.
| loss.loss_weight | loss_weight_override | returns |
| ---------------- | -------------------- | ------- |
| == 0 | None | True |
| != 0 | None | False |
| == 0 | == 0 | True |
| != 0 | == 0 | True |
| == 0 | != 0 | False |
| != 0 | != 0 | False |
Args:
loss: loss is an object that has attribute loss_weight.
loss.loss_weight is assigned when loss is initialized.
loss_weight_override: loss_weight used to override loss.loss_weight
Returns:
bool: True means skipping loss computation, and vice versa
"""
if (loss is None) or (loss.loss_weight == 0 and loss_weight_override is
None) or (loss_weight_override == 0):
return True
return False
|