AiOS / detrsmpl /data /datasets /human_hybrik_dataset.py
ttxskk
update
d7e58f0
raw
history blame
18.2 kB
import json
import os
import os.path
from abc import ABCMeta
from collections import OrderedDict
from typing import List, Optional, Union
import mmcv
import numpy as np
import torch
from detrsmpl.core.conventions.keypoints_mapping import get_mapping
from detrsmpl.core.evaluation import (
keypoint_3d_auc,
keypoint_3d_pck,
keypoint_mpjpe,
vertice_pve,
)
from detrsmpl.data.data_structures.human_data import HumanData
from detrsmpl.models.body_models.builder import build_body_model
from detrsmpl.utils.demo_utils import box2cs, xyxy2xywh
from .base_dataset import BaseDataset
from .builder import DATASETS
@DATASETS.register_module()
class HybrIKHumanImageDataset(BaseDataset, metaclass=ABCMeta):
"""Dataset for HybrIK training. The dataset loads raw features and apply
specified transforms to return a dict containing the image tensors and
other information.
Args:
data_prefix (str): Path to a directory where preprocessed datasets are
held.
pipeline (list[dict | callable]): A sequence of data transforms.
dataset_name (str): accepted names include 'h36m', 'pw3d',
'mpi_inf_3dhp', 'coco'
ann_file (str): Name of annotation file.
test_mode (bool): Store True when building test dataset.
Default: False.
"""
# metric
ALLOWED_METRICS = {
'mpjpe', 'pa-mpjpe', 'pve', '3dpck', 'pa-3dpck', '3dauc', 'pa-3dauc'
}
def __init__(self,
data_prefix: str,
pipeline: list,
dataset_name: str,
body_model: Optional[Union[dict, None]] = None,
ann_file: Optional[Union[str, None]] = None,
test_mode: Optional[bool] = False):
if dataset_name is not None:
self.dataset_name = dataset_name
self.test_mode = test_mode
super(HybrIKHumanImageDataset, self).__init__(data_prefix, pipeline,
ann_file, test_mode)
if body_model is not None:
self.body_model = build_body_model(body_model)
else:
self.body_model = None
def get_annotation_file(self):
"""Obtain annotation file path from data prefix."""
ann_prefix = os.path.join(self.data_prefix, 'preprocessed_datasets')
self.ann_file = os.path.join(ann_prefix, self.ann_file)
@staticmethod
def get_3d_keypoints_vis(keypoints):
"""Get 3d keypoints and visibility mask
Args:
keypoints (np.ndarray): 2d (NxKx3) or 3d (NxKx4) keypoints with
visibility. N refers to number of datapoints, K refers to number
of keypoints.
Returns:
joint_img (np.ndarray): (NxKx3) 3d keypoints
joint_vis (np.ndarray): (NxKx3) visibility mask for keypoints
"""
keypoints, keypoints_vis = keypoints[:, :, :-1], keypoints[:, :, -1]
num_datapoints, num_keypoints, dim = keypoints.shape
joint_img = np.zeros((num_datapoints, num_keypoints, 3),
dtype=np.float32)
joint_vis = np.zeros((num_datapoints, num_keypoints, 3),
dtype=np.float32)
joint_img[:, :, :dim] = keypoints
joint_vis[:, :, :dim] = np.tile(np.expand_dims(keypoints_vis, axis=2),
(1, dim))
return joint_img, joint_vis
def load_annotations(self):
"""Load annotations."""
self.get_annotation_file()
data = HumanData()
data.load(self.ann_file)
self.image_path = data['image_path']
self.num_data = len(self.image_path)
self.bbox_xyxy = data['bbox_xywh']
self.width = data['image_width']
self.height = data['image_height']
self.depth_factor = data['depth_factor']
try:
self.keypoints3d, self.keypoints3d_vis = self.get_3d_keypoints_vis(
data['keypoints2d'])
except KeyError:
self.keypoints3d, self.keypoints3d_vis = self.get_3d_keypoints_vis(
data['keypoints3d'])
try:
self.smpl = data['smpl']
if 'has_smpl' not in data.keys():
self.has_smpl = np.ones((self.num_data)).astype(np.float32)
else:
self.has_smpl = data['has_smpl'].astype(np.float32)
self.thetas = self.smpl['thetas'].astype(np.float32)
self.betas = self.smpl['betas'].astype(np.float32)
self.keypoints3d_relative, _ = self.get_3d_keypoints_vis(
data['keypoints3d_relative'])
self.keypoints3d17, self.keypoints3d17_vis = \
self.get_3d_keypoints_vis(data['keypoints3d17'])
self.keypoints3d17_relative, _ = self.get_3d_keypoints_vis(
data['keypoints3d17_relative'])
if self.test_mode:
self.keypoints3d_cam, _ = self.get_3d_keypoints_vis(
data['keypoints3d_cam'])
except KeyError:
self.has_smpl = np.zeros((self.num_data)).astype(np.float32)
if self.test_mode:
self.keypoints3d, self.keypoints3d_vis = \
self.get_3d_keypoints_vis(data['keypoints3d'])
self.keypoints3d_cam, _ = self.get_3d_keypoints_vis(
data['keypoints3d_cam'])
try:
self.intrinsic = data['cam_param']['intrinsic']
except KeyError:
self.intrinsic = np.zeros((self.num_data, 3, 3))
try:
self.target_twist = data['phi']
# self.target_twist_weight = np.ones_like((self.target_twist))
self.target_twist_weight = data['phi_weight']
except KeyError:
self.target_twist = np.zeros((self.num_data, 23, 2))
self.target_twist_weight = np.zeros_like((self.target_twist))
try:
self.root_cam = data['root_cam']
except KeyError:
self.root_cam = np.zeros((self.num_data, 3))
self.data_infos = []
for idx in range(self.num_data):
info = {}
info['ann_info'] = {}
info['img_prefix'] = None
info['image_path'] = os.path.join(self.data_prefix, 'datasets',
self.dataset_name,
self.image_path[idx])
bbox_xyxy = self.bbox_xyxy[idx]
info['bbox'] = bbox_xyxy[:4]
bbox_xywh = xyxy2xywh(bbox_xyxy)
center, scale = box2cs(bbox_xywh,
aspect_ratio=1.0,
bbox_scale_factor=1.25)
info['center'] = center
info['scale'] = scale
info['rotation'] = 0
info['ann_info']['dataset_name'] = self.dataset_name
info['ann_info']['height'] = self.height[idx]
info['ann_info']['width'] = self.width[idx]
info['depth_factor'] = float(self.depth_factor[idx])
info['has_smpl'] = int(self.has_smpl[idx])
info['joint_root'] = self.root_cam[idx].astype(np.float32)
info['intrinsic_param'] = self.intrinsic[idx].astype(np.float32)
info['target_twist'] = self.target_twist[idx].astype(
np.float32) # twist_phi
info['target_twist_weight'] = self.target_twist_weight[idx].astype(
np.float32)
info['keypoints3d'] = self.keypoints3d[idx]
info['keypoints3d_vis'] = self.keypoints3d_vis[idx]
if info['has_smpl']:
info['pose'] = self.thetas[idx]
info['beta'] = self.betas[idx].astype(np.float32)
info['keypoints3d_relative'] = self.keypoints3d_relative[idx]
info['keypoints3d17'] = self.keypoints3d17[idx]
info['keypoints3d17_vis'] = self.keypoints3d17_vis[idx]
info['keypoints3d17_relative'] = self.keypoints3d17_relative[
idx]
if self.test_mode:
info['joint_relative_17'] = self.keypoints3d17_relative[
idx].astype(np.float32)
else:
if self.test_mode:
info['joint_relative_17'] = self.keypoints3d_cam[
idx].astype(np.float32)
self.data_infos.append(info)
def evaluate(self,
outputs: list,
res_folder: str,
metric: Optional[Union[str, List[str]]] = 'pa-mpjpe',
**kwargs: dict):
"""Evaluate 3D keypoint results.
Args:
outputs (list): results from model inference.
res_folder (str): path to store results.
metric (Optional[Union[str, List(str)]]):
the type of metric. Default: 'pa-mpjpe'
kwargs (dict): other arguments.
Returns:
dict:
A dict of all evaluation results.
"""
metrics = metric if isinstance(metric, list) else [metric]
for metric in metrics:
if metric not in self.ALLOWED_METRICS:
raise ValueError(f'metric {metric} is not supported')
res_file = os.path.join(res_folder, 'result_keypoints.json')
res_dict = {}
for out in outputs:
target_id = out['image_idx']
batch_size = len(out['xyz_17'])
for i in range(batch_size):
res_dict[int(target_id[i])] = dict(
keypoints=out['xyz_17'][i],
poses=out['smpl_pose'][i],
betas=out['smpl_beta'][i],
)
keypoints, poses, betas = [], [], []
for i in range(self.num_data):
keypoints.append(res_dict[i]['keypoints'])
poses.append(res_dict[i]['poses'])
betas.append(res_dict[i]['betas'])
res = dict(keypoints=keypoints, poses=poses, betas=betas)
mmcv.dump(res, res_file)
name_value_tuples = []
for _metric in metrics:
if _metric == 'mpjpe':
_nv_tuples = self._report_mpjpe(res)
elif _metric == 'pa-mpjpe':
_nv_tuples = self._report_mpjpe(res, metric='pa-mpjpe')
elif _metric == '3dpck':
_nv_tuples = self._report_3d_pck(res)
elif _metric == 'pa-3dpck':
_nv_tuples = self._report_3d_pck(res, metric='pa-3dpck')
elif _metric == '3dauc':
_nv_tuples = self._report_3d_auc(res)
elif _metric == 'pa-3dauc':
_nv_tuples = self._report_3d_auc(res, metric='pa-3dauc')
elif _metric == 'pve':
_nv_tuples = self._report_pve(res)
else:
raise NotImplementedError
name_value_tuples.extend(_nv_tuples)
name_value = OrderedDict(name_value_tuples)
return name_value
@staticmethod
def _write_keypoint_results(keypoints, res_file):
"""Write results into a json file."""
with open(res_file, 'w') as f:
json.dump(keypoints, f, sort_keys=True, indent=4)
def _parse_result(self, res, mode='keypoint'):
"""Parse results."""
gts = self.data_infos
if mode == 'vertice':
pred_pose = torch.FloatTensor(res['poses'])
pred_beta = torch.FloatTensor(res['betas'])
pred_output = self.body_model(
betas=pred_beta,
body_pose=pred_pose[:, 1:],
global_orient=pred_pose[:, 0].unsqueeze(1),
pose2rot=False)
pred_vertices = pred_output['vertices'].detach().cpu().numpy()
gt_pose = torch.FloatTensor([gt['pose']
for gt in gts]).view(-1, 72)
gt_beta = torch.FloatTensor([gt['beta'] for gt in gts])
gt_output = self.body_model(betas=gt_beta,
body_pose=gt_pose[:, 3:],
global_orient=gt_pose[:, :3])
gt_vertices = gt_output['vertices'].detach().cpu().numpy()
gt_mask = np.ones(gt_vertices.shape[:-1])
assert len(pred_vertices) == self.num_data
return pred_vertices * 1000., gt_vertices * 1000., gt_mask
elif mode == 'keypoint':
pred_keypoints3d = res['keypoints']
assert len(pred_keypoints3d) == self.num_data
# (B, 17, 3)
pred_keypoints3d = np.array(pred_keypoints3d)
factor, root_idx_17 = 1, 0
if self.dataset_name == 'mpi_inf_3dhp':
_, hp3d_idxs, _ = get_mapping('human_data',
'mpi_inf_3dhp_test')
gt_keypoints3d = np.array(
[gt['joint_relative_17'][hp3d_idxs] for gt in gts])
joint_mapper = [
14, 11, 12, 13, 8, 9, 10, 15, 1, 16, 0, 5, 6, 7, 2, 3, 4
]
gt_keypoints3d_mask = np.ones(
(len(gt_keypoints3d), len(joint_mapper)))
else:
_, h36m_idxs, _ = get_mapping('human_data', 'h36m')
gt_keypoints3d = np.array(
[gt['joint_relative_17'][h36m_idxs] for gt in gts])
joint_mapper = [
6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10
]
gt_keypoints3d_mask = np.ones(
(len(gt_keypoints3d), len(joint_mapper)))
if self.dataset_name == 'pw3d':
factor = 1000
assert len(pred_keypoints3d) == self.num_data
pred_keypoints3d = pred_keypoints3d * (2000 / factor)
if self.dataset_name == 'mpi_inf_3dhp':
gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]
# root joint alignment
pred_keypoints3d = (
pred_keypoints3d -
pred_keypoints3d[:, None, root_idx_17]) * factor
gt_keypoints3d = (gt_keypoints3d -
gt_keypoints3d[:, None, root_idx_17]) * factor
if self.dataset_name == 'pw3d' or self.dataset_name == 'h36m':
# select eval 14 joints
pred_keypoints3d = pred_keypoints3d[:, joint_mapper, :]
gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]
gt_keypoints3d_mask = gt_keypoints3d_mask > 0
return pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask
else:
raise NotImplementedError()
def _report_mpjpe(self, res_file, metric='mpjpe'):
"""Cauculate mean per joint position error (MPJPE) or its variants PA-
MPJPE.
Report mean per joint position error (MPJPE) and mean per joint
position error after rigid alignment (PA-MPJPE)
"""
pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
self._parse_result(res_file, mode='keypoint')
err_name = metric.upper()
if metric == 'mpjpe':
alignment = 'none'
elif metric == 'pa-mpjpe':
alignment = 'procrustes'
else:
raise ValueError(f'Invalid metric: {metric}')
error = keypoint_mpjpe(pred_keypoints3d, gt_keypoints3d,
gt_keypoints3d_mask, alignment)
info_str = [(err_name, error)]
return info_str
def _report_3d_pck(self, res_file, metric='3dpck'):
"""Cauculate Percentage of Correct Keypoints (3DPCK) w. or w/o
Procrustes alignment.
Args:
keypoint_results (list): Keypoint predictions. See
'Body3DMpiInf3dhpDataset.evaluate' for details.
metric (str): Specify mpjpe variants. Supported options are:
- ``'3dpck'``: Standard 3DPCK.
- ``'pa-3dpck'``:
3DPCK after aligning prediction to groundtruth
via a rigid transformation (scale, rotation and
translation).
"""
pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
self._parse_result(res_file, mode='keypoint')
err_name = metric.upper()
if metric == '3dpck':
alignment = 'none'
elif metric == 'pa-3dpck':
alignment = 'procrustes'
else:
raise ValueError(f'Invalid metric: {metric}')
error = keypoint_3d_pck(pred_keypoints3d, gt_keypoints3d,
gt_keypoints3d_mask, alignment)
name_value_tuples = [(err_name, error)]
return name_value_tuples
def _report_3d_auc(self, res_file, metric='3dauc'):
"""Cauculate the Area Under the Curve (AUC) computed for a range of
3DPCK thresholds.
Args:
keypoint_results (list): Keypoint predictions. See
'Body3DMpiInf3dhpDataset.evaluate' for details.
metric (str): Specify mpjpe variants. Supported options are:
- ``'3dauc'``: Standard 3DAUC.
- ``'pa-3dauc'``: 3DAUC after aligning prediction to
groundtruth via a rigid transformation (scale, rotation and
translation).
"""
pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
self._parse_result(res_file, mode='keypoint')
err_name = metric.upper()
if metric == '3dauc':
alignment = 'none'
elif metric == 'pa-3dauc':
alignment = 'procrustes'
else:
raise ValueError(f'Invalid metric: {metric}')
error = keypoint_3d_auc(pred_keypoints3d, gt_keypoints3d,
gt_keypoints3d_mask, alignment)
name_value_tuples = [(err_name, error)]
return name_value_tuples
def _report_pve(self, res_file):
"""Cauculate per vertex error."""
pred_verts, gt_verts, _ = \
self._parse_result(res_file, mode='vertice')
error = vertice_pve(pred_verts, gt_verts)
return [('PVE', error)]