File size: 18,194 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import json
import os
import os.path
from abc import ABCMeta
from collections import OrderedDict
from typing import List, Optional, Union

import mmcv
import numpy as np
import torch

from detrsmpl.core.conventions.keypoints_mapping import get_mapping
from detrsmpl.core.evaluation import (
    keypoint_3d_auc,
    keypoint_3d_pck,
    keypoint_mpjpe,
    vertice_pve,
)
from detrsmpl.data.data_structures.human_data import HumanData
from detrsmpl.models.body_models.builder import build_body_model
from detrsmpl.utils.demo_utils import box2cs, xyxy2xywh
from .base_dataset import BaseDataset
from .builder import DATASETS


@DATASETS.register_module()
class HybrIKHumanImageDataset(BaseDataset, metaclass=ABCMeta):
    """Dataset for HybrIK training. The dataset loads raw features and apply
    specified transforms to return a dict containing the image tensors and
    other information.

    Args:

        data_prefix (str): Path to a directory where preprocessed datasets are
         held.
        pipeline (list[dict | callable]): A sequence of data transforms.
        dataset_name (str): accepted names include 'h36m', 'pw3d',
         'mpi_inf_3dhp', 'coco'
        ann_file (str): Name of annotation file.
        test_mode (bool): Store True when building test dataset.
         Default: False.
    """
    # metric
    ALLOWED_METRICS = {
        'mpjpe', 'pa-mpjpe', 'pve', '3dpck', 'pa-3dpck', '3dauc', 'pa-3dauc'
    }

    def __init__(self,
                 data_prefix: str,
                 pipeline: list,
                 dataset_name: str,
                 body_model: Optional[Union[dict, None]] = None,
                 ann_file: Optional[Union[str, None]] = None,
                 test_mode: Optional[bool] = False):
        if dataset_name is not None:
            self.dataset_name = dataset_name
        self.test_mode = test_mode
        super(HybrIKHumanImageDataset, self).__init__(data_prefix, pipeline,
                                                      ann_file, test_mode)
        if body_model is not None:
            self.body_model = build_body_model(body_model)
        else:
            self.body_model = None

    def get_annotation_file(self):
        """Obtain annotation file path from data prefix."""
        ann_prefix = os.path.join(self.data_prefix, 'preprocessed_datasets')
        self.ann_file = os.path.join(ann_prefix, self.ann_file)

    @staticmethod
    def get_3d_keypoints_vis(keypoints):
        """Get 3d keypoints and visibility mask
        Args:
            keypoints (np.ndarray): 2d (NxKx3) or 3d (NxKx4) keypoints with
             visibility. N refers to number of datapoints, K refers to number
             of keypoints.

        Returns:
            joint_img (np.ndarray): (NxKx3) 3d keypoints
            joint_vis (np.ndarray): (NxKx3) visibility mask for keypoints
        """
        keypoints, keypoints_vis = keypoints[:, :, :-1], keypoints[:, :, -1]
        num_datapoints, num_keypoints, dim = keypoints.shape
        joint_img = np.zeros((num_datapoints, num_keypoints, 3),
                             dtype=np.float32)
        joint_vis = np.zeros((num_datapoints, num_keypoints, 3),
                             dtype=np.float32)
        joint_img[:, :, :dim] = keypoints
        joint_vis[:, :, :dim] = np.tile(np.expand_dims(keypoints_vis, axis=2),
                                        (1, dim))
        return joint_img, joint_vis

    def load_annotations(self):
        """Load annotations."""
        self.get_annotation_file()
        data = HumanData()
        data.load(self.ann_file)

        self.image_path = data['image_path']
        self.num_data = len(self.image_path)

        self.bbox_xyxy = data['bbox_xywh']
        self.width = data['image_width']
        self.height = data['image_height']
        self.depth_factor = data['depth_factor']

        try:
            self.keypoints3d, self.keypoints3d_vis = self.get_3d_keypoints_vis(
                data['keypoints2d'])
        except KeyError:
            self.keypoints3d, self.keypoints3d_vis = self.get_3d_keypoints_vis(
                data['keypoints3d'])

        try:
            self.smpl = data['smpl']
            if 'has_smpl' not in data.keys():
                self.has_smpl = np.ones((self.num_data)).astype(np.float32)
            else:
                self.has_smpl = data['has_smpl'].astype(np.float32)
            self.thetas = self.smpl['thetas'].astype(np.float32)
            self.betas = self.smpl['betas'].astype(np.float32)

            self.keypoints3d_relative, _ = self.get_3d_keypoints_vis(
                data['keypoints3d_relative'])
            self.keypoints3d17, self.keypoints3d17_vis = \
                self.get_3d_keypoints_vis(data['keypoints3d17'])
            self.keypoints3d17_relative, _ = self.get_3d_keypoints_vis(
                data['keypoints3d17_relative'])

            if self.test_mode:
                self.keypoints3d_cam, _ = self.get_3d_keypoints_vis(
                    data['keypoints3d_cam'])
        except KeyError:
            self.has_smpl = np.zeros((self.num_data)).astype(np.float32)
            if self.test_mode:
                self.keypoints3d, self.keypoints3d_vis = \
                    self.get_3d_keypoints_vis(data['keypoints3d'])
                self.keypoints3d_cam, _ = self.get_3d_keypoints_vis(
                    data['keypoints3d_cam'])

        try:
            self.intrinsic = data['cam_param']['intrinsic']
        except KeyError:
            self.intrinsic = np.zeros((self.num_data, 3, 3))

        try:
            self.target_twist = data['phi']
            # self.target_twist_weight = np.ones_like((self.target_twist))
            self.target_twist_weight = data['phi_weight']
        except KeyError:
            self.target_twist = np.zeros((self.num_data, 23, 2))
            self.target_twist_weight = np.zeros_like((self.target_twist))

        try:
            self.root_cam = data['root_cam']
        except KeyError:
            self.root_cam = np.zeros((self.num_data, 3))

        self.data_infos = []

        for idx in range(self.num_data):
            info = {}
            info['ann_info'] = {}
            info['img_prefix'] = None
            info['image_path'] = os.path.join(self.data_prefix, 'datasets',
                                              self.dataset_name,
                                              self.image_path[idx])
            bbox_xyxy = self.bbox_xyxy[idx]
            info['bbox'] = bbox_xyxy[:4]
            bbox_xywh = xyxy2xywh(bbox_xyxy)
            center, scale = box2cs(bbox_xywh,
                                   aspect_ratio=1.0,
                                   bbox_scale_factor=1.25)

            info['center'] = center
            info['scale'] = scale
            info['rotation'] = 0
            info['ann_info']['dataset_name'] = self.dataset_name
            info['ann_info']['height'] = self.height[idx]
            info['ann_info']['width'] = self.width[idx]
            info['depth_factor'] = float(self.depth_factor[idx])
            info['has_smpl'] = int(self.has_smpl[idx])
            info['joint_root'] = self.root_cam[idx].astype(np.float32)
            info['intrinsic_param'] = self.intrinsic[idx].astype(np.float32)
            info['target_twist'] = self.target_twist[idx].astype(
                np.float32)  # twist_phi
            info['target_twist_weight'] = self.target_twist_weight[idx].astype(
                np.float32)
            info['keypoints3d'] = self.keypoints3d[idx]
            info['keypoints3d_vis'] = self.keypoints3d_vis[idx]

            if info['has_smpl']:
                info['pose'] = self.thetas[idx]
                info['beta'] = self.betas[idx].astype(np.float32)
                info['keypoints3d_relative'] = self.keypoints3d_relative[idx]
                info['keypoints3d17'] = self.keypoints3d17[idx]
                info['keypoints3d17_vis'] = self.keypoints3d17_vis[idx]
                info['keypoints3d17_relative'] = self.keypoints3d17_relative[
                    idx]

                if self.test_mode:
                    info['joint_relative_17'] = self.keypoints3d17_relative[
                        idx].astype(np.float32)

            else:
                if self.test_mode:
                    info['joint_relative_17'] = self.keypoints3d_cam[
                        idx].astype(np.float32)

            self.data_infos.append(info)

    def evaluate(self,
                 outputs: list,
                 res_folder: str,
                 metric: Optional[Union[str, List[str]]] = 'pa-mpjpe',
                 **kwargs: dict):
        """Evaluate 3D keypoint results.

        Args:
            outputs (list): results from model inference.
            res_folder (str): path to store results.
            metric (Optional[Union[str, List(str)]]):
                the type of metric. Default: 'pa-mpjpe'
            kwargs (dict): other arguments.
        Returns:
            dict:
                A dict of all evaluation results.
        """
        metrics = metric if isinstance(metric, list) else [metric]
        for metric in metrics:
            if metric not in self.ALLOWED_METRICS:
                raise ValueError(f'metric {metric} is not supported')

        res_file = os.path.join(res_folder, 'result_keypoints.json')

        res_dict = {}
        for out in outputs:
            target_id = out['image_idx']
            batch_size = len(out['xyz_17'])
            for i in range(batch_size):
                res_dict[int(target_id[i])] = dict(
                    keypoints=out['xyz_17'][i],
                    poses=out['smpl_pose'][i],
                    betas=out['smpl_beta'][i],
                )

        keypoints, poses, betas = [], [], []
        for i in range(self.num_data):
            keypoints.append(res_dict[i]['keypoints'])
            poses.append(res_dict[i]['poses'])
            betas.append(res_dict[i]['betas'])

        res = dict(keypoints=keypoints, poses=poses, betas=betas)
        mmcv.dump(res, res_file)

        name_value_tuples = []
        for _metric in metrics:
            if _metric == 'mpjpe':
                _nv_tuples = self._report_mpjpe(res)
            elif _metric == 'pa-mpjpe':
                _nv_tuples = self._report_mpjpe(res, metric='pa-mpjpe')
            elif _metric == '3dpck':
                _nv_tuples = self._report_3d_pck(res)
            elif _metric == 'pa-3dpck':
                _nv_tuples = self._report_3d_pck(res, metric='pa-3dpck')
            elif _metric == '3dauc':
                _nv_tuples = self._report_3d_auc(res)
            elif _metric == 'pa-3dauc':
                _nv_tuples = self._report_3d_auc(res, metric='pa-3dauc')
            elif _metric == 'pve':
                _nv_tuples = self._report_pve(res)
            else:
                raise NotImplementedError
            name_value_tuples.extend(_nv_tuples)

        name_value = OrderedDict(name_value_tuples)
        return name_value

    @staticmethod
    def _write_keypoint_results(keypoints, res_file):
        """Write results into a json file."""
        with open(res_file, 'w') as f:
            json.dump(keypoints, f, sort_keys=True, indent=4)

    def _parse_result(self, res, mode='keypoint'):
        """Parse results."""
        gts = self.data_infos
        if mode == 'vertice':
            pred_pose = torch.FloatTensor(res['poses'])
            pred_beta = torch.FloatTensor(res['betas'])
            pred_output = self.body_model(
                betas=pred_beta,
                body_pose=pred_pose[:, 1:],
                global_orient=pred_pose[:, 0].unsqueeze(1),
                pose2rot=False)
            pred_vertices = pred_output['vertices'].detach().cpu().numpy()

            gt_pose = torch.FloatTensor([gt['pose']
                                         for gt in gts]).view(-1, 72)
            gt_beta = torch.FloatTensor([gt['beta'] for gt in gts])
            gt_output = self.body_model(betas=gt_beta,
                                        body_pose=gt_pose[:, 3:],
                                        global_orient=gt_pose[:, :3])
            gt_vertices = gt_output['vertices'].detach().cpu().numpy()
            gt_mask = np.ones(gt_vertices.shape[:-1])
            assert len(pred_vertices) == self.num_data

            return pred_vertices * 1000., gt_vertices * 1000., gt_mask
        elif mode == 'keypoint':
            pred_keypoints3d = res['keypoints']
            assert len(pred_keypoints3d) == self.num_data
            # (B, 17, 3)
            pred_keypoints3d = np.array(pred_keypoints3d)
            factor, root_idx_17 = 1, 0

            if self.dataset_name == 'mpi_inf_3dhp':
                _, hp3d_idxs, _ = get_mapping('human_data',
                                              'mpi_inf_3dhp_test')
                gt_keypoints3d = np.array(
                    [gt['joint_relative_17'][hp3d_idxs] for gt in gts])
                joint_mapper = [
                    14, 11, 12, 13, 8, 9, 10, 15, 1, 16, 0, 5, 6, 7, 2, 3, 4
                ]
                gt_keypoints3d_mask = np.ones(
                    (len(gt_keypoints3d), len(joint_mapper)))
            else:
                _, h36m_idxs, _ = get_mapping('human_data', 'h36m')
                gt_keypoints3d = np.array(
                    [gt['joint_relative_17'][h36m_idxs] for gt in gts])
                joint_mapper = [
                    6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10
                ]
                gt_keypoints3d_mask = np.ones(
                    (len(gt_keypoints3d), len(joint_mapper)))
                if self.dataset_name == 'pw3d':
                    factor = 1000

            assert len(pred_keypoints3d) == self.num_data

            pred_keypoints3d = pred_keypoints3d * (2000 / factor)
            if self.dataset_name == 'mpi_inf_3dhp':
                gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]
            # root joint alignment
            pred_keypoints3d = (
                pred_keypoints3d -
                pred_keypoints3d[:, None, root_idx_17]) * factor
            gt_keypoints3d = (gt_keypoints3d -
                              gt_keypoints3d[:, None, root_idx_17]) * factor

            if self.dataset_name == 'pw3d' or self.dataset_name == 'h36m':
                # select eval 14 joints
                pred_keypoints3d = pred_keypoints3d[:, joint_mapper, :]
                gt_keypoints3d = gt_keypoints3d[:, joint_mapper, :]

            gt_keypoints3d_mask = gt_keypoints3d_mask > 0

            return pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask

        else:
            raise NotImplementedError()

    def _report_mpjpe(self, res_file, metric='mpjpe'):
        """Cauculate mean per joint position error (MPJPE) or its variants PA-
        MPJPE.

        Report mean per joint position error (MPJPE) and mean per joint
        position error after rigid alignment (PA-MPJPE)
        """
        pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
            self._parse_result(res_file, mode='keypoint')

        err_name = metric.upper()
        if metric == 'mpjpe':
            alignment = 'none'
        elif metric == 'pa-mpjpe':
            alignment = 'procrustes'
        else:
            raise ValueError(f'Invalid metric: {metric}')

        error = keypoint_mpjpe(pred_keypoints3d, gt_keypoints3d,
                               gt_keypoints3d_mask, alignment)
        info_str = [(err_name, error)]

        return info_str

    def _report_3d_pck(self, res_file, metric='3dpck'):
        """Cauculate Percentage of Correct Keypoints (3DPCK) w. or w/o
        Procrustes alignment.
        Args:
            keypoint_results (list): Keypoint predictions. See
                'Body3DMpiInf3dhpDataset.evaluate' for details.
            metric (str): Specify mpjpe variants. Supported options are:
                - ``'3dpck'``: Standard 3DPCK.
                - ``'pa-3dpck'``:
                    3DPCK after aligning prediction to groundtruth
                    via a rigid transformation (scale, rotation and
                    translation).
        """

        pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
            self._parse_result(res_file, mode='keypoint')

        err_name = metric.upper()
        if metric == '3dpck':
            alignment = 'none'
        elif metric == 'pa-3dpck':
            alignment = 'procrustes'
        else:
            raise ValueError(f'Invalid metric: {metric}')

        error = keypoint_3d_pck(pred_keypoints3d, gt_keypoints3d,
                                gt_keypoints3d_mask, alignment)
        name_value_tuples = [(err_name, error)]

        return name_value_tuples

    def _report_3d_auc(self, res_file, metric='3dauc'):
        """Cauculate the Area Under the Curve (AUC) computed for a range of
        3DPCK thresholds.
        Args:
            keypoint_results (list): Keypoint predictions. See
                'Body3DMpiInf3dhpDataset.evaluate' for details.
            metric (str): Specify mpjpe variants. Supported options are:
                - ``'3dauc'``: Standard 3DAUC.
                - ``'pa-3dauc'``: 3DAUC after aligning prediction to
                    groundtruth via a rigid transformation (scale, rotation and
                    translation).
        """

        pred_keypoints3d, gt_keypoints3d, gt_keypoints3d_mask = \
            self._parse_result(res_file, mode='keypoint')

        err_name = metric.upper()
        if metric == '3dauc':
            alignment = 'none'
        elif metric == 'pa-3dauc':
            alignment = 'procrustes'
        else:
            raise ValueError(f'Invalid metric: {metric}')

        error = keypoint_3d_auc(pred_keypoints3d, gt_keypoints3d,
                                gt_keypoints3d_mask, alignment)
        name_value_tuples = [(err_name, error)]

        return name_value_tuples

    def _report_pve(self, res_file):
        """Cauculate per vertex error."""
        pred_verts, gt_verts, _ = \
            self._parse_result(res_file, mode='vertice')
        error = vertice_pve(pred_verts, gt_verts)
        return [('PVE', error)]