Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from sklearn.metrics import pairwise_distances | |
import torch | |
from facility_location import multi_eval | |
import pickle | |
def solver_plot(data_npy, boost=False): | |
multi_eval.main(data_npy, boost) | |
all_solutions = pickle.loads(open('./facility_location/solutions.pkl', 'rb').read()) | |
data = data_npy.split('\n') | |
n = len(data) | |
p = int((len(data[0].split(' '))-2) / 2) | |
positions = [] | |
demands = [] | |
actual_facilities = [] | |
for row in data: | |
row = row.split(' ') | |
row = [x for x in row if len(x)] | |
positions.append([float(row[0]), float(row[1])]) | |
demand = [] | |
for i in range(2, 2+p): | |
demand.append(float(row[i])) | |
demands.append(demand) | |
actual_facility = [] | |
for i in range(2+p, 2+2*p): | |
actual_facility.append(bool(int(float(row[i])))) | |
actual_facilities.append(actual_facility) | |
positions = np.array(positions) | |
demands = np.array(demands) | |
actual_facilities = np.array(actual_facilities) | |
solution_facilities = np.array(all_solutions).T | |
# print(solution_facilities) | |
# print(actual_facilities) | |
actual_fig = go.Figure() | |
solution_fig = go.Figure() | |
for i in range(p): | |
actual_fig.add_trace(go.Scattermapbox( | |
lat=positions[actual_facilities[:, i]][:, 0], | |
lon=positions[actual_facilities[:, i]][:, 1], | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=10, | |
color=px.colors.qualitative.Plotly[i] | |
), | |
name=f'Facility {i+1}' | |
)) | |
solution_fig.add_trace(go.Scattermapbox( | |
lat=positions[solution_facilities[:, i]][:, 0], | |
lon=positions[solution_facilities[:, i]][:, 1], | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=10, | |
color=px.colors.qualitative.Plotly[i] | |
), | |
name=f'Facility {i+1}' | |
)) | |
actual_fig.update_layout( | |
mapbox=dict( | |
style='carto-positron', | |
center=dict(lat=np.mean(positions[actual_facilities[:, i]][:, 0]), \ | |
lon=np.mean(positions[actual_facilities[:, i]][:, 1])), | |
zoom=11.0 | |
), | |
margin=dict(l=0, r=0, b=0, t=0),) | |
solution_fig.update_layout( | |
mapbox=dict( | |
style='carto-positron', | |
center=dict(lat=np.mean(positions[solution_facilities[:, i]][:, 0]), \ | |
lon=np.mean(positions[solution_facilities[:, i]][:, 1])), | |
zoom=11.0 | |
), | |
margin=dict(l=0, r=0, b=0, t=0),) | |
# show legend | |
actual_fig.update_layout(showlegend=True) | |
solution_fig.update_layout(showlegend=True) | |
positions = np.deg2rad(positions) | |
dist = pairwise_distances(positions, metric='haversine') * 6371 | |
actual_ac = 0 | |
solution_ac = 0 | |
for i in range(p): | |
ac_matrix = dist * demands[:, i][:, None] | |
actual_ac += ac_matrix[:, actual_facilities[:, i]].min(axis=-1).sum() | |
solution_ac += ac_matrix[:, solution_facilities[:, i]].min(axis=-1).sum() | |
return actual_fig, solution_fig, actual_ac, solution_ac | |
def demo_plot(city, facility): | |
facility_name = ["π« School", "π₯ Hospital", "π³ Park"] | |
all_facility = ["π« School", "π₯ Hospital", "π³ Park"] | |
for i in range(len(all_facility)): | |
if all_facility[i] in facility: | |
all_facility[i] = True | |
else: | |
all_facility[i] = False | |
city_name = city.replace(' ', '_') | |
data = np.loadtxt(f'demo/{city_name}.txt') | |
positions = data[:, :2] | |
demands = data[:, 2:5] | |
actual_facility = data[:, 5:8] | |
solution_facility = data[:, 8:11] | |
actual_fig = go.Figure() | |
solution_fig = go.Figure() | |
for i in range(len(all_facility)): | |
if not all_facility[i]: | |
continue | |
actual_fig.add_trace(go.Scattermapbox( | |
lat=positions[actual_facility[:, i] == 1][:, 0], | |
lon=positions[actual_facility[:, i] == 1][:, 1], | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=10, | |
color=px.colors.qualitative.Plotly[i] | |
), | |
name=facility_name[i], | |
)) | |
solution_fig.add_trace(go.Scattermapbox( | |
lat=positions[solution_facility[:, i] == 1][:, 0], | |
lon=positions[solution_facility[:, i] == 1][:, 1], | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=10, | |
color=px.colors.qualitative.Plotly[i] | |
), | |
name=facility_name[i], | |
)) | |
actual_fig.update_layout( | |
mapbox=dict( | |
style='carto-positron', | |
center=dict(lat=np.mean(positions[actual_facility[:, i] == 1][:, 0]), \ | |
lon=np.mean(positions[actual_facility[:, i] == 1][:, 1])), | |
zoom=11.0 | |
), | |
margin=dict(l=0, r=0, b=0, t=0),) | |
solution_fig.update_layout( | |
mapbox=dict( | |
style='carto-positron', | |
center=dict(lat=np.mean(positions[solution_facility[:, i] == 1][:, 0]), \ | |
lon=np.mean(positions[solution_facility[:, i] == 1][:, 1])), | |
zoom=11.0 | |
), | |
margin=dict(l=0, r=0, b=0, t=0),) | |
# show legend | |
actual_fig.update_layout(showlegend=True) | |
solution_fig.update_layout(showlegend=True) | |
positions = np.deg2rad(positions) | |
dist = pairwise_distances(positions, metric='haversine') * 6371 | |
actual_ac = 0 | |
solution_ac = 0 | |
for i in range(len(all_facility)): | |
if not all_facility[i]: | |
continue | |
ac_matrix = dist * demands[:, i][:, None] | |
actual_ac += ac_matrix[:, actual_facility[:, i] == 1].min(axis=-1).sum() | |
solution_ac += ac_matrix[:, solution_facility[:, i] == 1].min(axis=-1).sum() | |
return actual_fig, solution_fig, actual_ac, solution_ac | |
def solver_plot1(data_npy, boost=False): | |
data = data_npy.split('\n') | |
n = len(data) | |
p = int((len(data[0].split(' '))-2) / 2) | |
positions = [] | |
demands = [] | |
actual_facilities = [] | |
for row in data: | |
row = row.split(' ') | |
row = [x for x in row if len(x)] | |
positions.append([float(row[0]), float(row[1])]) | |
demand = [] | |
for i in range(2, 2+p): | |
demand.append(float(row[i])) | |
demands.append(demand) | |
actual_facility = [] | |
for i in range(2+p, 2+2*p): | |
actual_facility.append(bool(int(float(row[i])))) | |
actual_facilities.append(actual_facility) | |
positions = np.array(positions) | |
demands = np.array(demands) | |
actual_facilities = np.array(actual_facilities) | |
solution_facilities = ~actual_facilities | |
actual_fig = go.Figure() | |
solution_fig = go.Figure() | |
for i in range(p): | |
actual_fig.add_trace(go.Scattermapbox( | |
lat=positions[actual_facilities[:, i]][:, 0], | |
lon=positions[actual_facilities[:, i]][:, 1], | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=10, | |
color=px.colors.qualitative.Plotly[i] | |
), | |
name=f'Facility {i+1}' | |
)) | |
solution_fig.add_trace(go.Scattermapbox( | |
lat=positions[solution_facilities[:, i]][:, 0], | |
lon=positions[solution_facilities[:, i]][:, 1], | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=10, | |
color=px.colors.qualitative.Plotly[i] | |
), | |
name=f'Facility {i+1}' | |
)) | |
actual_fig.update_layout( | |
mapbox=dict( | |
style='carto-positron', | |
center=dict(lat=np.mean(positions[actual_facilities[:, i]][:, 0]), \ | |
lon=np.mean(positions[actual_facilities[:, i]][:, 1])), | |
zoom=11.0 | |
), | |
margin=dict(l=0, r=0, b=0, t=0),) | |
solution_fig.update_layout( | |
mapbox=dict( | |
style='carto-positron', | |
center=dict(lat=np.mean(positions[solution_facilities[:, i]][:, 0]), \ | |
lon=np.mean(positions[solution_facilities[:, i]][:, 1])), | |
zoom=11.0 | |
), | |
margin=dict(l=0, r=0, b=0, t=0),) | |
# show legend | |
actual_fig.update_layout(showlegend=True) | |
solution_fig.update_layout(showlegend=True) | |
positions = np.deg2rad(positions) | |
dist = pairwise_distances(positions, metric='haversine') * 6371 | |
actual_ac = 0 | |
solution_ac = 0 | |
for i in range(p): | |
ac_matrix = dist * demands[:, i][:, None] | |
actual_ac += ac_matrix[:, actual_facilities[:, i]].min(axis=-1).sum() | |
solution_ac += ac_matrix[:, solution_facilities[:, i]].min(axis=-1).sum() | |
return actual_fig, solution_fig, actual_ac, solution_ac | |
def get_example(): | |
return [ | |
('40.71 -73.93 213 1\n40.72 -73.99 15 1\n40.65 -73.88 365 1\n40.57 -73.96 629 0\n40.70 -73.97 106 0\n40.61 -73.95 189 1'), | |
("40.71 -73.93 213 124 0 1\n40.72 -73.99 15 43 1 0\n40.65 -73.88 365 214 1 0\n40.57 -73.96 629 431 0 1\n40.70 -73.97 106 241 0 1\n40.60 -73.92 129 214 1 0\n40.61 -73.95 189 264 0 1\n40.63 -73.94 124 164 1 0"), | |
] | |
def load_npy_file(file_obj): | |
data = np.loadtxt(file_obj.name) | |
string_array = '\n'.join([' '.join(map(str, row)) for row in data]) | |
return string_array | |
with gr.Blocks() as demo: | |
gr.Markdown("## Demo") | |
with gr.Column(): | |
city = gr.Radio(choices=["New York", "Boston", "Los Angeles", "Chicago"], value="New York", label="Select City:") | |
facility = gr.CheckboxGroup(choices=["π« School", "π₯ Hospital", "π³ Park"], value=["π₯ Hospital"], label="Select Facility:") | |
btn = gr.Button(value="π Generate") | |
with gr.Row(): | |
actual_map = gr.Plot(label='Actual Facility Distribution') | |
solution_map = gr.Plot(label='Relocated Facility Distribution') | |
with gr.Row(): | |
actual_ac = gr.Textbox(label='Real-world Access Cost') | |
solution_ac = gr.Textbox(label='Relocated Access Cost') | |
demo.load(fn=demo_plot, inputs=[city, facility], outputs=[actual_map, solution_map, actual_ac, solution_ac]) | |
btn.click(fn=demo_plot, inputs=[city, facility], outputs=[actual_map, solution_map, actual_ac, solution_ac]) | |
gr.Markdown("## FLP & IUMFLP Solver") | |
with gr.Column(): | |
with gr.Row(): | |
data_npy = gr.Textbox(label="Input") | |
data_file = gr.UploadButton( | |
label="π Upload a txt file", | |
file_count="single", | |
file_types=[".txt"]) | |
with gr.Row(): | |
gr.Examples( | |
examples=get_example(), | |
inputs=[data_npy], | |
fn=solver_plot1, | |
outputs=[actual_map, solution_map, actual_ac, solution_ac], | |
) | |
with gr.Row(): | |
boost = gr.Checkbox(label="Turbo Boost (accelerate solution generation with fewer SWAP steps)", value=False) | |
btn2 = gr.Button(value="π Generate") | |
with gr.Row(): | |
actual_map = gr.Plot(label='Initial Solution') | |
solution_map = gr.Plot(label='Final Solution') | |
with gr.Row(): | |
actual_ac = gr.Textbox(label='Initial Access Cost') | |
solution_ac = gr.Textbox(label='Final Access Cost') | |
data_file.upload(fn=load_npy_file, inputs=[data_file], outputs=[data_npy]) | |
btn2.click(fn=solver_plot, inputs=[data_npy, boost], outputs=[actual_map, solution_map, actual_ac, solution_ac]) | |
if __name__ == "__main__": | |
demo.launch() |