Spaces:
Runtime error
Runtime error
File size: 12,148 Bytes
ef007f9 9036b2e 94c9f8b a257639 9036b2e c43ff17 94c9f8b a257639 94c9f8b a257639 94c9f8b 467801b 94c9f8b c8cf824 a8c9d0c 2b7d085 8df3023 94c9f8b a8c9d0c 9a6fd28 94c9f8b a8c9d0c 94c9f8b 2b7d085 94c9f8b c8cf824 94c9f8b 2b7d085 94c9f8b c8cf824 94c9f8b c43ff17 2b7d085 b51f06d 2b7d085 94c9f8b 2b7d085 94c9f8b 2b7d085 a8c9d0c 2b7d085 c43ff17 94c9f8b c43ff17 a257639 fcdd69c c8cf824 fcdd69c b51f06d c43ff17 a257639 b51f06d c8cf824 a257639 c8cf824 b51f06d c43ff17 62202b1 c43ff17 62202b1 2b7d085 c43ff17 c8cf824 94c9f8b c8cf824 94c9f8b c43ff17 c8cf824 c43ff17 ba82b7a c43ff17 8df3023 c8cf824 8df3023 c43ff17 c8cf824 a257639 c8cf824 c43ff17 c8cf824 c43ff17 c8cf824 94c9f8b c43ff17 ef007f9 c8cf824 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from sklearn.metrics import pairwise_distances
import torch
from facility_location import multi_eval
import pickle
def solver_plot(data_npy, boost=False):
multi_eval.main(data_npy, boost)
all_solutions = pickle.loads(open('./facility_location/solutions.pkl', 'rb').read())
data = data_npy.split('\n')
n = len(data)
p = int((len(data[0].split(' '))-2) / 2)
positions = []
demands = []
actual_facilities = []
for row in data:
row = row.split(' ')
row = [x for x in row if len(x)]
positions.append([float(row[0]), float(row[1])])
demand = []
for i in range(2, 2+p):
demand.append(float(row[i]))
demands.append(demand)
actual_facility = []
for i in range(2+p, 2+2*p):
actual_facility.append(bool(int(float(row[i]))))
actual_facilities.append(actual_facility)
positions = np.array(positions)
demands = np.array(demands)
actual_facilities = np.array(actual_facilities)
solution_facilities = np.array(all_solutions).T
# print(solution_facilities)
# print(actual_facilities)
actual_fig = go.Figure()
solution_fig = go.Figure()
for i in range(p):
actual_fig.add_trace(go.Scattermapbox(
lat=positions[actual_facilities[:, i]][:, 0],
lon=positions[actual_facilities[:, i]][:, 1],
mode='markers',
marker=go.scattermapbox.Marker(
size=10,
color=px.colors.qualitative.Plotly[i]
),
name=f'Facility {i+1}'
))
solution_fig.add_trace(go.Scattermapbox(
lat=positions[solution_facilities[:, i]][:, 0],
lon=positions[solution_facilities[:, i]][:, 1],
mode='markers',
marker=go.scattermapbox.Marker(
size=10,
color=px.colors.qualitative.Plotly[i]
),
name=f'Facility {i+1}'
))
actual_fig.update_layout(
mapbox=dict(
style='carto-positron',
center=dict(lat=np.mean(positions[actual_facilities[:, i]][:, 0]), \
lon=np.mean(positions[actual_facilities[:, i]][:, 1])),
zoom=11.0
),
margin=dict(l=0, r=0, b=0, t=0),)
solution_fig.update_layout(
mapbox=dict(
style='carto-positron',
center=dict(lat=np.mean(positions[solution_facilities[:, i]][:, 0]), \
lon=np.mean(positions[solution_facilities[:, i]][:, 1])),
zoom=11.0
),
margin=dict(l=0, r=0, b=0, t=0),)
# show legend
actual_fig.update_layout(showlegend=True)
solution_fig.update_layout(showlegend=True)
positions = np.deg2rad(positions)
dist = pairwise_distances(positions, metric='haversine') * 6371
actual_ac = 0
solution_ac = 0
for i in range(p):
ac_matrix = dist * demands[:, i][:, None]
actual_ac += ac_matrix[:, actual_facilities[:, i]].min(axis=-1).sum()
solution_ac += ac_matrix[:, solution_facilities[:, i]].min(axis=-1).sum()
return actual_fig, solution_fig, actual_ac, solution_ac
def demo_plot(city, facility):
facility_name = ["π« School", "π₯ Hospital", "π³ Park"]
all_facility = ["π« School", "π₯ Hospital", "π³ Park"]
for i in range(len(all_facility)):
if all_facility[i] in facility:
all_facility[i] = True
else:
all_facility[i] = False
city_name = city.replace(' ', '_')
data = np.loadtxt(f'demo/{city_name}.txt')
positions = data[:, :2]
demands = data[:, 2:5]
actual_facility = data[:, 5:8]
solution_facility = data[:, 8:11]
actual_fig = go.Figure()
solution_fig = go.Figure()
for i in range(len(all_facility)):
if not all_facility[i]:
continue
actual_fig.add_trace(go.Scattermapbox(
lat=positions[actual_facility[:, i] == 1][:, 0],
lon=positions[actual_facility[:, i] == 1][:, 1],
mode='markers',
marker=go.scattermapbox.Marker(
size=10,
color=px.colors.qualitative.Plotly[i]
),
name=facility_name[i],
))
solution_fig.add_trace(go.Scattermapbox(
lat=positions[solution_facility[:, i] == 1][:, 0],
lon=positions[solution_facility[:, i] == 1][:, 1],
mode='markers',
marker=go.scattermapbox.Marker(
size=10,
color=px.colors.qualitative.Plotly[i]
),
name=facility_name[i],
))
actual_fig.update_layout(
mapbox=dict(
style='carto-positron',
center=dict(lat=np.mean(positions[actual_facility[:, i] == 1][:, 0]), \
lon=np.mean(positions[actual_facility[:, i] == 1][:, 1])),
zoom=11.0
),
margin=dict(l=0, r=0, b=0, t=0),)
solution_fig.update_layout(
mapbox=dict(
style='carto-positron',
center=dict(lat=np.mean(positions[solution_facility[:, i] == 1][:, 0]), \
lon=np.mean(positions[solution_facility[:, i] == 1][:, 1])),
zoom=11.0
),
margin=dict(l=0, r=0, b=0, t=0),)
# show legend
actual_fig.update_layout(showlegend=True)
solution_fig.update_layout(showlegend=True)
positions = np.deg2rad(positions)
dist = pairwise_distances(positions, metric='haversine') * 6371
actual_ac = 0
solution_ac = 0
for i in range(len(all_facility)):
if not all_facility[i]:
continue
ac_matrix = dist * demands[:, i][:, None]
actual_ac += ac_matrix[:, actual_facility[:, i] == 1].min(axis=-1).sum()
solution_ac += ac_matrix[:, solution_facility[:, i] == 1].min(axis=-1).sum()
return actual_fig, solution_fig, actual_ac, solution_ac
def solver_plot1(data_npy, boost=False):
data = data_npy.split('\n')
n = len(data)
p = int((len(data[0].split(' '))-2) / 2)
positions = []
demands = []
actual_facilities = []
for row in data:
row = row.split(' ')
row = [x for x in row if len(x)]
positions.append([float(row[0]), float(row[1])])
demand = []
for i in range(2, 2+p):
demand.append(float(row[i]))
demands.append(demand)
actual_facility = []
for i in range(2+p, 2+2*p):
actual_facility.append(bool(int(float(row[i]))))
actual_facilities.append(actual_facility)
positions = np.array(positions)
demands = np.array(demands)
actual_facilities = np.array(actual_facilities)
solution_facilities = ~actual_facilities
actual_fig = go.Figure()
solution_fig = go.Figure()
for i in range(p):
actual_fig.add_trace(go.Scattermapbox(
lat=positions[actual_facilities[:, i]][:, 0],
lon=positions[actual_facilities[:, i]][:, 1],
mode='markers',
marker=go.scattermapbox.Marker(
size=10,
color=px.colors.qualitative.Plotly[i]
),
name=f'Facility {i+1}'
))
solution_fig.add_trace(go.Scattermapbox(
lat=positions[solution_facilities[:, i]][:, 0],
lon=positions[solution_facilities[:, i]][:, 1],
mode='markers',
marker=go.scattermapbox.Marker(
size=10,
color=px.colors.qualitative.Plotly[i]
),
name=f'Facility {i+1}'
))
actual_fig.update_layout(
mapbox=dict(
style='carto-positron',
center=dict(lat=np.mean(positions[actual_facilities[:, i]][:, 0]), \
lon=np.mean(positions[actual_facilities[:, i]][:, 1])),
zoom=11.0
),
margin=dict(l=0, r=0, b=0, t=0),)
solution_fig.update_layout(
mapbox=dict(
style='carto-positron',
center=dict(lat=np.mean(positions[solution_facilities[:, i]][:, 0]), \
lon=np.mean(positions[solution_facilities[:, i]][:, 1])),
zoom=11.0
),
margin=dict(l=0, r=0, b=0, t=0),)
# show legend
actual_fig.update_layout(showlegend=True)
solution_fig.update_layout(showlegend=True)
positions = np.deg2rad(positions)
dist = pairwise_distances(positions, metric='haversine') * 6371
actual_ac = 0
solution_ac = 0
for i in range(p):
ac_matrix = dist * demands[:, i][:, None]
actual_ac += ac_matrix[:, actual_facilities[:, i]].min(axis=-1).sum()
solution_ac += ac_matrix[:, solution_facilities[:, i]].min(axis=-1).sum()
return actual_fig, solution_fig, actual_ac, solution_ac
def get_example():
return [
('40.71 -73.93 213 1\n40.72 -73.99 15 1\n40.65 -73.88 365 1\n40.57 -73.96 629 0\n40.70 -73.97 106 0\n40.61 -73.95 189 1'),
("40.71 -73.93 213 124 0 1\n40.72 -73.99 15 43 1 0\n40.65 -73.88 365 214 1 0\n40.57 -73.96 629 431 0 1\n40.70 -73.97 106 241 0 1\n40.60 -73.92 129 214 1 0\n40.61 -73.95 189 264 0 1\n40.63 -73.94 124 164 1 0"),
]
def load_npy_file(file_obj):
data = np.loadtxt(file_obj.name)
string_array = '\n'.join([' '.join(map(str, row)) for row in data])
return string_array
with gr.Blocks() as demo:
gr.Markdown("## Demo")
with gr.Column():
city = gr.Radio(choices=["New York", "Boston", "Los Angeles", "Chicago"], value="New York", label="Select City:")
facility = gr.CheckboxGroup(choices=["π« School", "π₯ Hospital", "π³ Park"], value=["π₯ Hospital"], label="Select Facility:")
btn = gr.Button(value="π Generate")
with gr.Row():
actual_map = gr.Plot(label='Actual Facility Distribution')
solution_map = gr.Plot(label='Relocated Facility Distribution')
with gr.Row():
actual_ac = gr.Textbox(label='Real-world Access Cost')
solution_ac = gr.Textbox(label='Relocated Access Cost')
demo.load(fn=demo_plot, inputs=[city, facility], outputs=[actual_map, solution_map, actual_ac, solution_ac])
btn.click(fn=demo_plot, inputs=[city, facility], outputs=[actual_map, solution_map, actual_ac, solution_ac])
gr.Markdown("## FLP & IUMFLP Solver")
with gr.Column():
with gr.Row():
data_npy = gr.Textbox(label="Input")
data_file = gr.UploadButton(
label="π Upload a txt file",
file_count="single",
file_types=[".txt"])
with gr.Row():
gr.Examples(
examples=get_example(),
inputs=[data_npy],
fn=solver_plot1,
outputs=[actual_map, solution_map, actual_ac, solution_ac],
)
with gr.Row():
boost = gr.Checkbox(label="Turbo Boost (accelerate solution generation with fewer SWAP steps)", value=False)
btn2 = gr.Button(value="π Generate")
with gr.Row():
actual_map = gr.Plot(label='Initial Solution')
solution_map = gr.Plot(label='Final Solution')
with gr.Row():
actual_ac = gr.Textbox(label='Initial Access Cost')
solution_ac = gr.Textbox(label='Final Access Cost')
data_file.upload(fn=load_npy_file, inputs=[data_file], outputs=[data_npy])
btn2.click(fn=solver_plot, inputs=[data_npy, boost], outputs=[actual_map, solution_map, actual_ac, solution_ac])
if __name__ == "__main__":
demo.launch() |