苏泓源 commited on
Commit
62202b1
·
1 Parent(s): 70f0045
Files changed (1) hide show
  1. app.py +31 -31
app.py CHANGED
@@ -4,9 +4,9 @@ import torch
4
  from model import Net
5
 
6
 
7
- model = Net(100, 50, 10)
8
- model.load_state_dict(torch.load('model.pth'))
9
- model.eval()
10
 
11
 
12
 
@@ -33,41 +33,41 @@ def demo_plot(city, facility):
33
 
34
 
35
 
36
- def infer(file_obj):
37
- results = ""
38
- for file in file_obj:
39
- data = np.load(file.name)
40
- output = model(torch.from_numpy(data).float()).detach().numpy()
41
- results += np.array_str(output) + "\n"
42
- return results
43
 
44
 
45
 
46
 
47
- with gr.Blocks("TTest") as demo:
48
- gr.Markdown("## TTest")
49
- output = gr.Textbox(label="Output")
50
- data = gr.UploadButton(
51
- label="Upload a .npy",
52
- file_count="multiple",
53
- file_types=[".npy"])
54
- data.upload(fn=infer, inputs=data, outputs=output)
55
 
56
 
57
 
58
- # with gr.Blocks() as demo:
59
- # with gr.Column():
60
- # # with gr.Row():
61
- # # min_price = gr.Number(value=250, label="Minimum Price")
62
- # # max_price = gr.Number(value=1000, label="Maximum Price")
63
- # city = gr.CheckboxGroup(choices=["New York", "Boston", "Los Angeles", "Chicago"], value=["New York"], label="Select City:")
64
- # facility = gr.CheckboxGroup(choices=["School", "Hospital", "Park"], value=["Hospital"], label="Select Facility:")
65
- # btn = gr.Button(value="Generate")
66
- # map = gr.Plot()
67
- # demo.load(demo_plot, [city, facility], map)
68
- # btn.click(demo_plot, [city, facility], map)
69
- # demo.load(filter_map, [min_price, max_price, boroughs], map)
70
- # btn.click(filter_map, [min_price, max_price, boroughs], map)
71
 
72
  if __name__ == "__main__":
73
  demo.launch()
 
4
  from model import Net
5
 
6
 
7
+ # model = Net(100, 50, 10)
8
+ # model.load_state_dict(torch.load('model.pth'))
9
+ # model.eval()
10
 
11
 
12
 
 
33
 
34
 
35
 
36
+ # def infer(file_obj):
37
+ # results = ""
38
+ # for file in file_obj:
39
+ # data = np.load(file.name)
40
+ # output = model(torch.from_numpy(data).float()).detach().numpy()
41
+ # results += np.array_str(output) + "\n"
42
+ # return results
43
 
44
 
45
 
46
 
47
+ # with gr.Blocks("TTest") as demo:
48
+ # gr.Markdown("## TTest")
49
+ # output = gr.Textbox(label="Output")
50
+ # data = gr.UploadButton(
51
+ # label="Upload a .npy",
52
+ # file_count="multiple",
53
+ # file_types=[".npy"])
54
+ # data.upload(fn=infer, inputs=data, outputs=output)
55
 
56
 
57
 
58
+ with gr.Blocks() as demo:
59
+ with gr.Column():
60
+ # with gr.Row():
61
+ # min_price = gr.Number(value=250, label="Minimum Price")
62
+ # max_price = gr.Number(value=1000, label="Maximum Price")
63
+ city = gr.CheckboxGroup(choices=["New York", "Boston", "Los Angeles", "Chicago"], value=["New York"], label="Select City:")
64
+ facility = gr.CheckboxGroup(choices=["School", "Hospital", "Park"], value=["Hospital"], label="Select Facility:")
65
+ btn = gr.Button(value="Generate")
66
+ map = gr.Plot()
67
+ demo.load(demo_plot, [city, facility], map)
68
+ btn.click(demo_plot, [city, facility], map)
69
+ demo.load(filter_map, [min_price, max_price, boroughs], map)
70
+ btn.click(filter_map, [min_price, max_price, boroughs], map)
71
 
72
  if __name__ == "__main__":
73
  demo.launch()