File size: 24,263 Bytes
05b0e9e 71c65f1 05b0e9e 86ce8bb 05b0e9e 71c65f1 05b0e9e 71c65f1 05b0e9e 71c65f1 05b0e9e 71c65f1 05b0e9e 71c65f1 05b0e9e 3534475 05b0e9e 3534475 05b0e9e 60b25bc 05b0e9e 86ce8bb 05b0e9e 86ce8bb 05b0e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
# Copyright (C) 2021, Mindee.
# This program is licensed under the Apache License version 2.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details.
import os
import streamlit as st
import streamlit.components.v1 as components
import time
import matplotlib.pyplot as plt
import pandas as pd
from pipeline import Pipeline
import html
from IPython.core.display import display, HTML
import json
from PIL import Image
from tqdm import tqdm
import logging
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
import copy
from download_models import check_if_exist
import re
import numpy as np
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import plotly.express as plotpx
import umap
def image(src_as_string, **style):
return img(src=src_as_string, style=styles(**style))
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def update_highlight(current,old):
out = current
matches_background_new = [(m.start(0), m.end(0)) for m in re.finditer("background-color:rgba\\(234, 131, 4,", out)]
matches_background_old = [(m.start(0), m.end(0)) for m in re.finditer("background-color:rgba\\(234, 131, 4,", old)]
for x,y in zip(matches_background_old,matches_background_new):
try:
old_importance = re.search("\\d+\\.\\d+",old[x[1]:x[1]+20])
new_importance = re.search("\\d+\\.\\d+",current[y[1]:y[1]+20])
if int(out[y[1]]) ==0 and float(old[x[1]]) != 0:
out = out[0:y[1]] + str(old_importance.group(0)) + out[y[1]:]
return False,out
if float(out[y[1]]) !=0 and float(old[x[1]]) != 0:
if float(old[x[1]]) > float(out[y[1]]):
out = out[0:y[1]] + str(old_importance.group(0))[0] + out[y[1]:]
return False,out
except Exception as e:
return True, out
return True,out
def hidde_menu():
footer_style = """<style>
footer {
visibility: hidden;
}
footer:after {
content:"An end-to-end Breast Pathology Classification System to infer Breast Cancer Diagnosis and Severity";
visibility: visible;
display: block;
position: center;
#background-color: red;
padding: 5px;
top: 2px;
}
</style>
"""
st.markdown(footer_style, unsafe_allow_html=True)
def main(myargs):
project_dir = os.path.dirname(os.path.abspath(__file__))
def add_content(columns):
if 'hg_df' in st.session_state:
columns[1].dataframe(st.session_state.hg_df)
if 'all_l' in st.session_state:
columns[2].dataframe(st.session_state.all_l)
if "highlight_samples" in st.session_state:
if "selected_indices" in st.session_state:
if len(st.session_state.selected_indices) >0:
out = ""
l = st.session_state.selected_indices
l.sort()
for ind in l:
out += st.session_state.highlight_samples[ind] + "<br><br>"
components.html(out,scrolling=True)
else:
components.html(st.session_state.highlight_samples[0])
else:
components.html(st.session_state.highlight_samples[0])
# Add Plot - Only for File version
if st.session_state['input_type'] == 'File' and "embeddings_all" in st.session_state and st.session_state.embeddings_plot in ["2D", "3D"]:
indices = [x for x in range(st.session_state.data_df[st.session_state.input_column].values.shape[0])]
if "selected_indices" in st.session_state:
if len(st.session_state.selected_indices) >=4:
l = st.session_state.selected_indices
l.sort()
indices = l
if st.session_state.data_df[st.session_state.input_column].values.shape[0] >=2:
sub_embeddings = st.session_state.embeddings_all[indices]
sentences = st.session_state.data_df[st.session_state.input_column].values[indices]
sentences_parses = []
break_size = 20
for data in sentences:
d = data.split()
size_sentence = len(d)
if len(d) >break_size:
out = ""
for lower_bound in range(0,size_sentence, break_size):
upper_bound = lower_bound + break_size if lower_bound + break_size <= size_sentence else size_sentence
out += " ".join(x for x in d[lower_bound:upper_bound]) + "<br>"
sentences_parses.append(out)
else:
sentences_parses.append(data)
prediction_label = st.session_state.hg_df["Prediction"].values[indices]
prediction_worst_label = []
for pred in prediction_label:
preds = pred.split(" | ")
if len(preds) ==1:
prediction_worst_label.extend(preds)
else:
worst_index = min([st.session_state.predictor.bert_model.config['worst_rank'].index(x) for x in preds])
prediction_worst_label.append(st.session_state.predictor.bert_model.config['worst_rank'][worst_index])
if st.session_state.embeddings_type == "PCA":
low_dim_embeddings = PCA(n_components=3).fit_transform(sub_embeddings)
elif st.session_state.embeddings_type == "TSNE":
low_dim_embeddings = TSNE(n_components=3,init="pca",perplexity=st.session_state.perplexity,learning_rate=st.session_state.learning_rate).fit_transform(sub_embeddings)
else:
n_neighbors = min(st.session_state.n_neighbors, len(sub_embeddings)-1 )
low_dim_embeddings = umap.UMAP(n_neighbors=n_neighbors, min_dist=st.session_state.min_dist,n_components=3).fit(sub_embeddings).embedding_
df_embeddings = pd.DataFrame(low_dim_embeddings)
df_embeddings = df_embeddings.rename(columns={0:'x',1:'y',2:'z'})
df_embeddings = df_embeddings.assign(severity=prediction_worst_label)
df_embeddings = df_embeddings.assign(text=sentences_parses)
df_embeddings = df_embeddings.assign(data_index=indices)
df_embeddings = df_embeddings.assign(all_predictions=prediction_label)
if st.session_state.embeddings_plot == "2D":
# 2D
plot = plotpx.scatter(
df_embeddings, x='x', y='y',
color='severity', labels={'color': 'severity'},
hover_data=['text','all_predictions','data_index'],title = 'BERT Embeddings Visualization - Please select rows (at least 4) to display specific examples'
)
else:
# 3D
plot = plotpx.scatter_3d(
df_embeddings, x='x', y='y', z='z',
color='severity', labels={'color': 'severity'},
hover_data=['text','all_predictions','data_index'],title = 'BERT Embeddings Visualization - Please select rows (at least 4) to display specific examples'
)
st.plotly_chart(plot,use_container_width=True,)
#worst_rank_ind = [classes.index(x) for x in worst_rank]
if 'bert_lime_output' in st.session_state and st.session_state.bert_lime:
if len(st.session_state.bert_lime_output) >0: # need to re-run prediction
st.markdown("BERT Interpretability")
components.html(st.session_state.bert_lime_output[0])
if 'json_output' in st.session_state and st.session_state.json_out:
st.markdown("Here are your analysis results in JSON format:")
out = {}
if "selected_indices" in st.session_state:
if len(st.session_state.selected_indices) >0:
l = st.session_state.selected_indices
l.sort()
for ind in l:
out['sample_'+str(ind)] = st.session_state.json_output['sample_'+str(ind)]
st.json(out)
else:
out['sample_'+str(0)] = st.session_state.json_output['sample_'+str(0)]
st.json(out)
else:
# Display JSON
out['sample_'+str(0)] = st.session_state.json_output['sample_'+str(0)]
st.json(out)
def delete_var_session(keys:list):
for key in keys:
if key in st.session_state:
del st.session_state[key]
im = Image.open(os.path.join(project_dir, "imgs/icon.png"))
# Wide mode
st.set_page_config(page_title='HCSBC', layout = 'wide',page_icon=im,menu_items={
'Get Help': 'https://github.com/thiagosantos1/BreastPathologyClassificationSystem',
'Report a bug': "https://github.com/thiagosantos1/BreastPathologyClassificationSystem",
'About': "An end-to-end breast pathology classification system https://github.com/thiagosantos1/BreastPathologyClassificationSystem"
})
st.sidebar.image(os.path.join(project_dir,"imgs/doctor.png"),use_column_width=False)
# Designing the interface
st.markdown("<h1 style='text-align: center; color: black;'>HCSBC: Hierarchical Classification System for Breast Cancer Specimen Report</h1>", unsafe_allow_html=True)
st.markdown("System Pipeline: Pathology Emory Pubmed BERT + 6 independent Machine Learning discriminators")
# For newline
st.write('\n')
# Instructions
st.markdown("*Hint: click on the top-right corner to enlarge it!*")
# Set the columns
cols = st.columns((1, 1, 1))
#cols = st.columns(4)
cols[0].subheader("Input Data")
cols[1].subheader("Severity Predictions")
cols[2].subheader("Diagnose Predictions")
# Sidebar
# File selection
st.sidebar.title("Data Selection")
st.session_state['input_type'] = st.sidebar.radio("Input Selection", ('File', 'Text'), key="data_format",index=1)
if "prev_input_type" not in st.session_state:
st.session_state['prev_input_type'] = st.session_state.input_type
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;}</style>', unsafe_allow_html=True)
# Disabling warning
st.set_option('deprecation.showfileUploaderEncoding', False)
if st.session_state['input_type'] == 'File':
if st.session_state['prev_input_type'] == 'Text':
delete_var_session(keys=["data_df","data_columns","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"])
st.session_state['prev_input_type'] = "File"
# Choose your own file
new_file = st.sidebar.file_uploader("Upload Document", type=['xlsx','csv'])
if 'uploaded_file' in st.session_state and st.session_state.uploaded_file != None and new_file != None:
if st.session_state.uploaded_file.name != new_file.name and st.session_state.uploaded_file.id != new_file.id:
delete_var_session(keys=["data_df","data_columns","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"])
st.session_state['uploaded_file'] = new_file
data_columns = ['Input']
if 'data_columns' not in st.session_state:
st.session_state['data_columns'] = data_columns
if st.session_state.uploaded_file is not None:
if 'data_df' not in st.session_state:
if st.session_state.uploaded_file.name.endswith('.xlsx'):
df = pd.read_excel(st.session_state.uploaded_file)
else:
df = pd.read_csv(st.session_state.uploaded_file)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df = df.fillna("NA")
data_columns = df.columns.values
st.session_state['data_df'] = df
st.session_state['data_columns'] = data_columns
else:
if st.session_state['prev_input_type'] == 'File':
delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"])
st.session_state['prev_input_type'] = "Text"
input_column = "Input"
data = st.sidebar.text_area("Please enter a breast cancer pathology diagnose",value="BRWIRE Left wire directed segmntal mastectomy; short suture, superior; long suture, lateral breast, left, wire-directed segmental mastectomy: - infiltrating ductal carcinoma, nottingham grade i, 0.8 cm in maximum gross dimension. - ductal carcinoma in situ, low nuclear grade, solid and cribriform types, associated with microcalcifications and partially involving a small intraductal papilloma (0.2 cm). - invasive and in situ carcinoma extend to within 0.2 cm of the anterior specimen edge separately submitted margin specimen below). - no angiolymphatic invasion identifie - adjacent breast with biopsy site changes, a small intraductal papilloma (0.2 cm), and fibrocystic changes. - see synoptic report.")
if "user_input" in st.session_state:
if data != st.session_state.user_input:
delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"])
st.session_state['user_input'] = data
if len(st.session_state.user_input.split()) >0:
st.session_state['data_df'] = pd.DataFrame([st.session_state['user_input']], columns =[input_column])
st.session_state['input_column'] = input_column
st.session_state['uploaded_file'] = True
else:
delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"])
if 'data_df' in st.session_state:
cols[0].dataframe(st.session_state.data_df)
if st.session_state['input_type'] == 'File':
# Columns selection
st.sidebar.write('\n')
st.sidebar.title("Column For Prediction")
input_column = st.sidebar.selectbox("Columns", st.session_state.data_columns)
st.session_state['input_column'] = input_column
st.sidebar.write('\n')
st.sidebar.title("Severity Model")
input_higher = st.sidebar.selectbox("Model", ["PathologyEmoryPubMedBERT"])
st.session_state['input_higher'] = input_higher
if "prev_input_higher" not in st.session_state:
st.session_state['prev_input_higher'] = st.session_state.input_higher
st.session_state['input_higher_exist'] = check_if_exist(st.session_state.input_higher)
st.session_state['load_new_higher_model'] = True
elif st.session_state.prev_input_higher != st.session_state.input_higher:
st.session_state['input_higher_exist'] = check_if_exist(st.session_state.input_higher)
st.session_state['prev_input_higher'] = st.session_state.input_higher
st.session_state['load_new_higher_model'] = True
delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"])
st.sidebar.write('\n')
st.sidebar.title("Diagnosis Model")
input_all_labels = st.sidebar.selectbox("Model", ['single_vectorizer', 'branch_vectorizer'])
st.session_state['input_all_labels'] = input_all_labels
if "prev_input_all_labels" not in st.session_state:
st.session_state['prev_input_all_labels'] = st.session_state.input_all_labels
st.session_state['input_all_labels_exist'] = check_if_exist(st.session_state.input_all_labels)
st.session_state['load_new_all_label_model'] = True
elif st.session_state.prev_input_all_labels != st.session_state.input_all_labels:
st.session_state['input_all_labels_exist'] = check_if_exist(st.session_state.input_all_labels)
st.session_state['prev_input_all_labels'] = st.session_state.input_all_labels
st.session_state['load_new_all_label_model'] = True
delete_var_session(keys=["data_df","input_column","user_input","hg_df","all_l","highlight_samples","selected_indices","json_output","bert_lime_output","embeddings_all"])
# For newline
st.sidebar.write('\n')
st.sidebar.title("Analysis Options")
predictions, json_output, higher_order_pred,all_labels_pred,higher_order_prob,all_labels_prob = {},[],[],[],[],[]
hg_df, all_l,highlight_samples, bert_lime_output, embeddings_all= [],[],[],[],[]
if st.session_state['input_type'] == 'File':
embeddings_plot = st.sidebar.radio('Display embeddings plot',
['2D',
'3D',
'Dont Display'],index=1)
st.session_state['embeddings_plot'] = embeddings_plot
else:
st.session_state['embeddings_plot'] = 'Dont Display'
if st.session_state['input_type'] == 'File':
embeddings_type = st.sidebar.radio('Dimensionality Reduction',
['PCA',
'TSNE','UMAP'],index=0)
st.session_state['embeddings_type'] = embeddings_type
if st.session_state.embeddings_type == "TSNE":
perplexity = st.sidebar.slider("Perplexity", min_value=5, max_value=100, step=5, value=30)
st.session_state['perplexity'] = perplexity
learning_rate = st.sidebar.slider("Learning Rate", min_value=10, max_value=1000, step=10, value=100)
st.session_state['learning_rate'] = learning_rate
if st.session_state.embeddings_type == "UMAP":
n_neighbors = st.sidebar.slider("Neighbors", min_value=2, max_value=100, step=1, value=2)
st.session_state['n_neighbors'] = n_neighbors
min_dist = st.sidebar.slider("Minimal Distance", min_value=0.1, max_value=0.99, step=0.05, value=0.1)
st.session_state['min_dist'] = min_dist
json_out = st.sidebar.checkbox('Display Json',value = True,key='check1')
st.session_state['json_out'] = json_out
if st.session_state['input_type'] == 'Text':
bert_lime = st.sidebar.checkbox('Display BERT Interpretability',value = False,key='check2')
st.session_state['bert_lime'] = bert_lime
else:
st.session_state['bert_lime'] = False
# For newline
st.sidebar.write('\n')
st.sidebar.title("Prediction")
if st.sidebar.button("Run Prediction"):
if st.session_state.uploaded_file is None:
st.sidebar.write("Please upload a your data")
else:
st.session_state['input_all_labels_exist'] = check_if_exist(st.session_state.input_all_labels)
if not st.session_state.input_all_labels_exist:
st.sidebar.write("Please Download Model: " + str(st.session_state.input_all_labels))
st.session_state['input_higher_exist'] = check_if_exist(st.session_state.input_higher)
if not st.session_state.input_higher_exist:
st.sidebar.write("Please Download Model: " + str(st.session_state.input_higher))
if st.session_state.input_all_labels_exist and st.session_state.input_higher_exist:
if "predictor" not in st.session_state or st.session_state.load_new_higher_model or st.session_state.load_new_all_label_model:
with st.spinner('Loading model...'):
print("\n\tLoading Model")
st.session_state["predictor"] = Pipeline(bert_option=str(st.session_state.input_higher), branch_option=str(st.session_state.input_all_labels))
st.session_state['load_new_higher_model'] = False
st.session_state['load_new_all_label_model'] = False
with st.spinner('Transforming Data...'):
data = st.session_state.data_df[st.session_state.input_column].values
with st.spinner('Analyzing...'):
time.sleep(0.1)
prog_bar = st.progress(0)
logging.info("Running Predictions for data size of: " + str(len(data)))
logging.info("\n\tRunning Predictions with: " + str(st.session_state.input_higher) + str(st.session_state.input_all_labels))
for index in tqdm(range(len(data))):
d = data[index]
time.sleep(0.1)
prog_bar.progress(int( (100/len(data)) * (index+1) ))
# refactor json
preds,embeddings_output = st.session_state.predictor.run(d)
embeddings = embeddings_output.tolist()
embeddings_all.append(embeddings[0])
if st.session_state.bert_lime:
logging.info("Running BERT LIME Interpretability Predictions")
bert_lime_output.append(st.session_state.predictor.bert_interpretability(d))
predictions["sample_" + str(index)] = {}
for ind,pred in enumerate(preds):
predictions["sample_" + str(index)]["prediction_" + str(ind)] = pred
prog_bar.progress(100)
time.sleep(0.1)
for key,sample in predictions.items():
higher,all_p, prob_higher, prob_all = [],[],[],[]
for key,pred in sample.items():
for higher_order, sub_arr in pred.items():
higher.append(higher_order)
prob_higher.append(round(sub_arr["probability"], 2))
for label,v in sub_arr['diagnose'].items():
all_p.append(label)
prob_all.append(round(v["probability"], 2))
higher_order_pred.append(" | ".join(x for x in higher))
all_labels_pred.append(" | ".join(x for x in all_p))
higher_order_prob.append(" | ".join(str(x) for x in prob_higher))
all_labels_prob.append(" | ".join(str(x) for x in prob_all))
predictions_refact = copy.deepcopy(predictions)
for index in tqdm(range(len(data))):
highlights = ""
key = "sample_" + str(index)
for k,v in predictions[key].items():
for k_s, v_s in v.items():
predictions_refact["sample_" + str(index)]["data"] = v_s['data']
predictions_refact["sample_" + str(index)]["transformer_data"] = v_s['transformer_data']
predictions_refact["sample_" + str(index)]["discriminator_data"] = v_s['word_analysis']['discriminator_data']
highlight = v_s['word_analysis']['highlighted_html_text']
if len(highlights) >0:
done = False
merged = highlight
while not done:
done,merged = update_highlight(merged,highlights)
highlights = merged
else:
highlights = highlight
del predictions_refact[key][k][k_s]['data']
del predictions_refact[key][k][k_s]['transformer_data']
del predictions_refact[key][k][k_s]['word_analysis']['discriminator_data']
highlight_samples.append(highlights)
json_output = predictions_refact
hg_df = pd.DataFrame(list(zip(higher_order_pred, higher_order_prob)), columns =['Prediction', "Probability"])
all_l = pd.DataFrame(list(zip(all_labels_pred,all_labels_prob)), columns =['Prediction',"Probability"])
all_preds = pd.DataFrame(list(zip(higher_order_pred, all_labels_pred)), columns =['Severity Prediction',"Diagnose Prediction"])
st.session_state['hg_df'] = hg_df
st.session_state['all_l'] = all_l
st.session_state['all_preds'] = all_preds
st.session_state['json_output'] = json_output
st.session_state['highlight_samples'] = highlight_samples
st.session_state['highlight_samples_df'] = pd.DataFrame(highlight_samples, columns =["HTML Word Importance"])
st.session_state['bert_lime_output'] = bert_lime_output
st.session_state['embeddings_all'] = np.asarray(embeddings_all)
if 'data_df' in st.session_state and 'json_output' in st.session_state:
st.markdown("<h1 style='text-align: center; color: purple;'>Model Analysis</h1>", unsafe_allow_html=True)
selected_indices = st.multiselect('Select Rows to Display Word Importance, Embeddings Visualization, and Json Analysis:', [x for x in range(len(st.session_state.data_df))])
st.session_state['selected_indices'] = selected_indices
add_content(cols)
if 'json_output' in st.session_state:
st.sidebar.write('\n')
st.sidebar.title("Save Results")
st.sidebar.write('\n')
st.sidebar.download_button(
label="Download Output Json",
data=str(st.session_state.json_output),
file_name="output.json",
)
st.sidebar.download_button(
label="Download Predictions",
data=st.session_state.all_preds.to_csv(),
file_name="predictions.csv",
)
st.sidebar.download_button(
label="Download Data + Predictions",
data = pd.concat([st.session_state.data_df, st.session_state.all_preds,st.session_state.highlight_samples_df], axis=1, join='inner').to_csv(),
file_name="data_predictions.csv",
)
st.sidebar.write('\n')
st.sidebar.title("Contact Me")
sub_colms = st.sidebar.columns([1, 1, 1])
sub_colms[0].markdown('''<a href="https://github.com/thiagosantos1/BreastPathologyClassificationSystem">
<img src="https://img.icons8.com/fluency/48/000000/github.png" /></a>''',unsafe_allow_html=True)
sub_colms[1].markdown('''<a href="https://twitter.com/intent/follow?original_referer=https%3A%2F%2Fgithub.com%2Ftsantos_maia&screen_name=tsantos_maia">
<img src="https://img.icons8.com/color/48/000000/twitter--v1.png" /></a>''',unsafe_allow_html=True)
sub_colms[2].markdown('''<a href="https://www.linkedin.com/in/thiagosantos-cs/">
<img src="https://img.icons8.com/color/48/000000/linkedin.png" /></a>''',unsafe_allow_html=True)
hidde_menu()
if __name__ == '__main__':
myargs = [
"Made in ",
image('https://avatars3.githubusercontent.com/u/45109972?s=400&v=4',
width=px(25), height=px(25)),
" with ❤️ by ",
link("https://www.linkedin.com/in/thiagosantos-cs/", "@thiagosantos-cs"),
br(),
link("https://www.linkedin.com/in/thiagosantos-cs/", image('https://img.icons8.com/color/48/000000/twitter--v1.png')),
link("https://github.com/thiagosantos1/BreastPathologyClassificationSystem", image('https://img.icons8.com/fluency/48/000000/github.png')),
]
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(filename)s - %(message)s",
datefmt="%d/%m/%Y %H:%M:%S",
level=logging.INFO)
main(myargs)
|