ai-tutor-chatbot / scripts /gradio-ui.py
Omar Solano
update prompt
6430286
raw
history blame
8.15 kB
import json
import logging
import os
import pickle
from datetime import datetime
from typing import Optional
import chromadb
import gradio as gr
from dotenv import load_dotenv
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import VectorStoreIndex, get_response_synthesizer
from llama_index.core.data_structs import Node
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import BaseNode, MetadataMode, NodeWithScore, TextNode
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.gemini import Gemini
from llama_index.llms.openai import OpenAI
from llama_index.vector_stores.chroma import ChromaVectorStore
from tutor_prompts import (
TEXT_QA_TEMPLATE,
QueryValidation,
system_message_openai_agent,
system_message_validation,
)
load_dotenv(".env")
# from utils import init_mongo_db
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logging.getLogger("gradio").setLevel(logging.INFO)
logging.getLogger("httpx").setLevel(logging.WARNING)
# # This variables are used to intercept API calls
# # launch mitmweb
# cert_file = "/Users/omar/Downloads/mitmproxy-ca-cert.pem"
# os.environ["REQUESTS_CA_BUNDLE"] = cert_file
# os.environ["SSL_CERT_FILE"] = cert_file
# os.environ["HTTPS_PROXY"] = "http://127.0.0.1:8080"
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
MONGODB_URI = os.getenv("MONGODB_URI")
DB_PATH = os.getenv("DB_PATH", f"scripts/ai-tutor-vector-db")
DB_COLLECTION = os.getenv("DB_NAME", "ai-tutor-vector-db")
if not os.path.exists(DB_PATH):
# Download the vector database from the Hugging Face Hub if it doesn't exist locally
# https://huggingface.co./datasets/towardsai-buster/ai-tutor-db/tree/main
logger.warning(
f"Vector database does not exist at {DB_PATH}, downloading from Hugging Face Hub"
)
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="towardsai-buster/ai-tutor-vector-db",
local_dir=DB_PATH,
repo_type="dataset",
)
logger.info(f"Downloaded vector database to {DB_PATH}")
AVAILABLE_SOURCES_UI = [
"HF Transformers",
"Towards AI Blog",
"Wikipedia",
"OpenAI Docs",
"LangChain Docs",
"LLama-Index Docs",
"RAG Course",
]
AVAILABLE_SOURCES = [
"HF_Transformers",
"towards_ai_blog",
"wikipedia",
"openai_docs",
"langchain_docs",
"llama_index_docs",
"rag_course",
]
# # Initialize MongoDB
# mongo_db = (
# init_mongo_db(uri=MONGODB_URI, db_name="towardsai-buster")
# if MONGODB_URI
# else logger.warning("No mongodb uri found, you will not be able to save data.")
# )
db2 = chromadb.PersistentClient(path=DB_PATH)
chroma_collection = db2.get_or_create_collection(DB_COLLECTION)
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
embed_model=OpenAIEmbedding(model="text-embedding-3-large", mode="similarity"),
transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=400)],
show_progress=True,
use_async=True,
)
retriever = index.as_retriever(
similarity_top_k=10,
use_async=True,
embed_model=OpenAIEmbedding(model="text-embedding-3-large", mode="similarity"),
)
with open("scripts/ai-tutor-vector-db/document_dict.pkl", "rb") as f:
document_dict = pickle.load(f)
def format_sources(completion) -> str:
if len(completion.source_nodes) == 0:
return ""
# Mapping of source system names to user-friendly names
display_source_to_ui = {
src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
}
documents_answer_template: str = (
"πŸ“ Here are the sources I used to answer your question:\n\n{documents}"
)
document_template: str = "[πŸ”— {source}: {title}]({url}), relevance: {score:2.2f}"
documents = "\n".join(
[
document_template.format(
title=src.metadata["title"],
score=src.score,
source=display_source_to_ui.get(
src.metadata["source"], src.metadata["source"]
),
url=src.metadata["url"],
)
for src in completion.source_nodes
]
)
return documents_answer_template.format(documents=documents)
def add_sources(answer_str, completion):
if completion is None:
yield answer_str
formatted_sources = format_sources(completion)
if formatted_sources == "":
yield answer_str
answer_str += "\n\n" + formatted_sources
yield answer_str
def generate_completion(
query,
history,
sources,
model,
):
print(f"query: {query}")
print(model)
print(sources)
nodes = retriever.retrieve(query)
# Filter out nodes with the same ref_doc_id
def filter_nodes_by_unique_doc_id(nodes):
unique_nodes = {}
for node in nodes:
doc_id = node.node.ref_doc_id
if doc_id is not None and doc_id not in unique_nodes:
unique_nodes[doc_id] = node
return list(unique_nodes.values())
nodes = filter_nodes_by_unique_doc_id(nodes)
print(f"number of nodes after filtering: {len(nodes)}")
nodes_context = []
for node in nodes:
print("Node ID\t", node.node_id)
print("Title\t", node.metadata["title"])
print("Text\t", node.text)
print("Score\t", node.score)
print("Metadata\t", node.metadata)
print("-_" * 20)
if node.metadata["retrieve_doc"] == True:
print("This node will be replaced by the document")
doc = document_dict[node.node.ref_doc_id]
print(doc.text)
new_node = NodeWithScore(
node=TextNode(text=doc.text, metadata=node.metadata), score=node.score
)
nodes_context.append(new_node)
else:
nodes_context.append(node)
if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
llm = Gemini(
api_key=os.getenv("GOOGLE_API_KEY"),
model=f"models/{model}",
temperature=1,
max_tokens=None,
)
else:
llm = OpenAI(temperature=1, model=model, max_tokens=None)
response_synthesizer = get_response_synthesizer(
llm=llm,
response_mode="simple_summarize",
text_qa_template=TEXT_QA_TEMPLATE,
streaming=True,
)
completion = response_synthesizer.synthesize(query, nodes=nodes_context)
answer_str = ""
for token in completion.response_gen:
answer_str += token
yield answer_str
logger.info(f"completion: {answer_str=}")
for sources in add_sources(answer_str, completion):
yield sources
logger.info(f"source: {sources=}")
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value["value"])
else:
print("You downvoted this response: " + data.value["value"])
accordion = gr.Accordion(label="Customize Sources (Click to expand)", open=False)
sources = gr.CheckboxGroup(
AVAILABLE_SOURCES_UI, label="Sources", value="HF Transformers", interactive=False
)
model = gr.Dropdown(
[
"gemini-1.5-pro",
"gemini-1.5-flash",
"gpt-3.5-turbo",
],
label="Model",
value="gemini-1.5-pro",
interactive=True,
)
with gr.Blocks(
fill_height=True,
title="Towards AI πŸ€–",
analytics_enabled=True,
) as demo:
chatbot = gr.Chatbot(
scale=1,
placeholder="<strong>Towards AI πŸ€–: A Question-Answering Bot for anything AI-related</strong><br>",
show_label=False,
likeable=True,
show_copy_button=True,
)
chatbot.like(vote, None, None)
gr.ChatInterface(
fn=generate_completion,
chatbot=chatbot,
undo_btn=None,
additional_inputs=[sources, model],
additional_inputs_accordion=accordion,
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
demo.launch(debug=False, share=False)