File size: 8,154 Bytes
0769f39 a2a9a44 0769f39 a2a9a44 0769f39 a2a9a44 0769f39 f892f10 3e7bb9e 0769f39 84f8c13 0769f39 84f8c13 0769f39 bc02571 9b897d3 3e7bb9e 0769f39 9b897d3 0769f39 f892f10 0769f39 a2a9a44 8d71d41 a938093 a2a9a44 a938093 3e7bb9e a2a9a44 0769f39 9adb76c 0769f39 9adb76c a2a9a44 0769f39 8d71d41 a2a9a44 0769f39 8d71d41 a2a9a44 0769f39 a2a9a44 8d71d41 9adb76c 0769f39 a2a9a44 0769f39 a2a9a44 0769f39 a2a9a44 bddd047 0769f39 a2a9a44 f1d2f05 a2a9a44 d41011f a2a9a44 84f8c13 a2a9a44 f1d2f05 a2a9a44 8d71d41 9b897d3 8d71d41 a2a9a44 f1d2f05 8d71d41 a2a9a44 8d71d41 a2a9a44 8d71d41 74dcf79 8d71d41 0cfc98f 8d71d41 74dcf79 0769f39 8d71d41 0769f39 8d71d41 0769f39 8d71d41 0769f39 8d71d41 0769f39 a2a9a44 8d71d41 f0db5cb 8d71d41 a2a9a44 8d71d41 3e7bb9e 8d71d41 a2a9a44 6430286 8d71d41 6430286 8d71d41 9adb76c 8d71d41 beeea5a 8d71d41 3e7bb9e 8d71d41 a2a9a44 8d71d41 3e7bb9e 8d71d41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import json
import logging
import os
import pickle
from datetime import datetime
from typing import Optional
import chromadb
import gradio as gr
from dotenv import load_dotenv
from llama_index.agent.openai import OpenAIAgent
from llama_index.core import VectorStoreIndex, get_response_synthesizer
from llama_index.core.data_structs import Node
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import BaseNode, MetadataMode, NodeWithScore, TextNode
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.gemini import Gemini
from llama_index.llms.openai import OpenAI
from llama_index.vector_stores.chroma import ChromaVectorStore
from tutor_prompts import (
TEXT_QA_TEMPLATE,
QueryValidation,
system_message_openai_agent,
system_message_validation,
)
load_dotenv(".env")
# from utils import init_mongo_db
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logging.getLogger("gradio").setLevel(logging.INFO)
logging.getLogger("httpx").setLevel(logging.WARNING)
# # This variables are used to intercept API calls
# # launch mitmweb
# cert_file = "/Users/omar/Downloads/mitmproxy-ca-cert.pem"
# os.environ["REQUESTS_CA_BUNDLE"] = cert_file
# os.environ["SSL_CERT_FILE"] = cert_file
# os.environ["HTTPS_PROXY"] = "http://127.0.0.1:8080"
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
MONGODB_URI = os.getenv("MONGODB_URI")
DB_PATH = os.getenv("DB_PATH", f"scripts/ai-tutor-vector-db")
DB_COLLECTION = os.getenv("DB_NAME", "ai-tutor-vector-db")
if not os.path.exists(DB_PATH):
# Download the vector database from the Hugging Face Hub if it doesn't exist locally
# https://huggingface.co./datasets/towardsai-buster/ai-tutor-db/tree/main
logger.warning(
f"Vector database does not exist at {DB_PATH}, downloading from Hugging Face Hub"
)
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="towardsai-buster/ai-tutor-vector-db",
local_dir=DB_PATH,
repo_type="dataset",
)
logger.info(f"Downloaded vector database to {DB_PATH}")
AVAILABLE_SOURCES_UI = [
"HF Transformers",
"Towards AI Blog",
"Wikipedia",
"OpenAI Docs",
"LangChain Docs",
"LLama-Index Docs",
"RAG Course",
]
AVAILABLE_SOURCES = [
"HF_Transformers",
"towards_ai_blog",
"wikipedia",
"openai_docs",
"langchain_docs",
"llama_index_docs",
"rag_course",
]
# # Initialize MongoDB
# mongo_db = (
# init_mongo_db(uri=MONGODB_URI, db_name="towardsai-buster")
# if MONGODB_URI
# else logger.warning("No mongodb uri found, you will not be able to save data.")
# )
db2 = chromadb.PersistentClient(path=DB_PATH)
chroma_collection = db2.get_or_create_collection(DB_COLLECTION)
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
embed_model=OpenAIEmbedding(model="text-embedding-3-large", mode="similarity"),
transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=400)],
show_progress=True,
use_async=True,
)
retriever = index.as_retriever(
similarity_top_k=10,
use_async=True,
embed_model=OpenAIEmbedding(model="text-embedding-3-large", mode="similarity"),
)
with open("scripts/ai-tutor-vector-db/document_dict.pkl", "rb") as f:
document_dict = pickle.load(f)
def format_sources(completion) -> str:
if len(completion.source_nodes) == 0:
return ""
# Mapping of source system names to user-friendly names
display_source_to_ui = {
src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
}
documents_answer_template: str = (
"π Here are the sources I used to answer your question:\n\n{documents}"
)
document_template: str = "[π {source}: {title}]({url}), relevance: {score:2.2f}"
documents = "\n".join(
[
document_template.format(
title=src.metadata["title"],
score=src.score,
source=display_source_to_ui.get(
src.metadata["source"], src.metadata["source"]
),
url=src.metadata["url"],
)
for src in completion.source_nodes
]
)
return documents_answer_template.format(documents=documents)
def add_sources(answer_str, completion):
if completion is None:
yield answer_str
formatted_sources = format_sources(completion)
if formatted_sources == "":
yield answer_str
answer_str += "\n\n" + formatted_sources
yield answer_str
def generate_completion(
query,
history,
sources,
model,
):
print(f"query: {query}")
print(model)
print(sources)
nodes = retriever.retrieve(query)
# Filter out nodes with the same ref_doc_id
def filter_nodes_by_unique_doc_id(nodes):
unique_nodes = {}
for node in nodes:
doc_id = node.node.ref_doc_id
if doc_id is not None and doc_id not in unique_nodes:
unique_nodes[doc_id] = node
return list(unique_nodes.values())
nodes = filter_nodes_by_unique_doc_id(nodes)
print(f"number of nodes after filtering: {len(nodes)}")
nodes_context = []
for node in nodes:
print("Node ID\t", node.node_id)
print("Title\t", node.metadata["title"])
print("Text\t", node.text)
print("Score\t", node.score)
print("Metadata\t", node.metadata)
print("-_" * 20)
if node.metadata["retrieve_doc"] == True:
print("This node will be replaced by the document")
doc = document_dict[node.node.ref_doc_id]
print(doc.text)
new_node = NodeWithScore(
node=TextNode(text=doc.text, metadata=node.metadata), score=node.score
)
nodes_context.append(new_node)
else:
nodes_context.append(node)
if model == "gemini-1.5-flash" or model == "gemini-1.5-pro":
llm = Gemini(
api_key=os.getenv("GOOGLE_API_KEY"),
model=f"models/{model}",
temperature=1,
max_tokens=None,
)
else:
llm = OpenAI(temperature=1, model=model, max_tokens=None)
response_synthesizer = get_response_synthesizer(
llm=llm,
response_mode="simple_summarize",
text_qa_template=TEXT_QA_TEMPLATE,
streaming=True,
)
completion = response_synthesizer.synthesize(query, nodes=nodes_context)
answer_str = ""
for token in completion.response_gen:
answer_str += token
yield answer_str
logger.info(f"completion: {answer_str=}")
for sources in add_sources(answer_str, completion):
yield sources
logger.info(f"source: {sources=}")
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value["value"])
else:
print("You downvoted this response: " + data.value["value"])
accordion = gr.Accordion(label="Customize Sources (Click to expand)", open=False)
sources = gr.CheckboxGroup(
AVAILABLE_SOURCES_UI, label="Sources", value="HF Transformers", interactive=False
)
model = gr.Dropdown(
[
"gemini-1.5-pro",
"gemini-1.5-flash",
"gpt-3.5-turbo",
],
label="Model",
value="gemini-1.5-pro",
interactive=True,
)
with gr.Blocks(
fill_height=True,
title="Towards AI π€",
analytics_enabled=True,
) as demo:
chatbot = gr.Chatbot(
scale=1,
placeholder="<strong>Towards AI π€: A Question-Answering Bot for anything AI-related</strong><br>",
show_label=False,
likeable=True,
show_copy_button=True,
)
chatbot.like(vote, None, None)
gr.ChatInterface(
fn=generate_completion,
chatbot=chatbot,
undo_btn=None,
additional_inputs=[sources, model],
additional_inputs_accordion=accordion,
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
demo.launch(debug=False, share=False)
|