|
from os.path import dirname, exists, join, relpath |
|
from unittest.mock import Mock |
|
|
|
import pytest |
|
import torch |
|
from mmcv.runner import build_optimizer |
|
|
|
from mmdet.core import BitmapMasks, PolygonMasks |
|
from mmdet.datasets.builder import DATASETS |
|
from mmdet.datasets.utils import NumClassCheckHook |
|
|
|
|
|
def _get_config_directory(): |
|
"""Find the predefined detector config directory.""" |
|
try: |
|
|
|
repo_dpath = dirname(dirname(__file__)) |
|
repo_dpath = join(repo_dpath, '..') |
|
except NameError: |
|
|
|
import mmdet |
|
repo_dpath = dirname(dirname(mmdet.__file__)) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def _check_numclasscheckhook(detector, config_mod): |
|
dummy_runner = Mock() |
|
dummy_runner.model = detector |
|
|
|
def get_dataset_name_classes(dataset): |
|
|
|
if isinstance(dataset, (list, tuple)): |
|
dataset = dataset[0] |
|
while ('dataset' in dataset): |
|
dataset = dataset['dataset'] |
|
|
|
if isinstance(dataset, (list, tuple)): |
|
dataset = dataset[0] |
|
return dataset['type'], dataset.get('classes', None) |
|
|
|
compatible_check = NumClassCheckHook() |
|
dataset_name, CLASSES = get_dataset_name_classes( |
|
config_mod['data']['train']) |
|
if CLASSES is None: |
|
CLASSES = DATASETS.get(dataset_name).CLASSES |
|
dummy_runner.data_loader.dataset.CLASSES = CLASSES |
|
compatible_check.before_train_epoch(dummy_runner) |
|
|
|
dummy_runner.data_loader.dataset.CLASSES = None |
|
compatible_check.before_train_epoch(dummy_runner) |
|
|
|
dataset_name, CLASSES = get_dataset_name_classes(config_mod['data']['val']) |
|
if CLASSES is None: |
|
CLASSES = DATASETS.get(dataset_name).CLASSES |
|
dummy_runner.data_loader.dataset.CLASSES = CLASSES |
|
compatible_check.before_val_epoch(dummy_runner) |
|
dummy_runner.data_loader.dataset.CLASSES = None |
|
compatible_check.before_val_epoch(dummy_runner) |
|
|
|
|
|
def test_config_build_detector(): |
|
"""Test that all detection models defined in the configs can be |
|
initialized.""" |
|
from mmcv import Config |
|
from mmdet.models import build_detector |
|
|
|
config_dpath = _get_config_directory() |
|
print(f'Found config_dpath = {config_dpath}') |
|
|
|
import glob |
|
config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py'))) |
|
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1] |
|
config_names = [relpath(p, config_dpath) for p in config_fpaths] |
|
|
|
print(f'Using {len(config_names)} config files') |
|
|
|
for config_fname in config_names: |
|
config_fpath = join(config_dpath, config_fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
config_mod.model |
|
print(f'Building detector, config_fpath = {config_fpath}') |
|
|
|
|
|
if 'pretrained' in config_mod.model: |
|
config_mod.model['pretrained'] = None |
|
|
|
detector = build_detector(config_mod.model) |
|
assert detector is not None |
|
|
|
_check_numclasscheckhook(detector, config_mod) |
|
|
|
optimizer = build_optimizer(detector, config_mod.optimizer) |
|
assert isinstance(optimizer, torch.optim.Optimizer) |
|
|
|
if 'roi_head' in config_mod.model.keys(): |
|
|
|
|
|
assert detector.roi_head.with_bbox and detector.with_bbox |
|
assert detector.roi_head.with_mask == detector.with_mask |
|
|
|
head_config = config_mod.model['roi_head'] |
|
_check_roi_head(head_config, detector.roi_head) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _check_roi_head(config, head): |
|
|
|
assert config['type'] == head.__class__.__name__ |
|
|
|
|
|
bbox_roi_cfg = config.bbox_roi_extractor |
|
bbox_roi_extractor = head.bbox_roi_extractor |
|
_check_roi_extractor(bbox_roi_cfg, bbox_roi_extractor) |
|
|
|
|
|
bbox_cfg = config.bbox_head |
|
bbox_head = head.bbox_head |
|
_check_bbox_head(bbox_cfg, bbox_head) |
|
|
|
if head.with_mask: |
|
|
|
if config.mask_roi_extractor: |
|
mask_roi_cfg = config.mask_roi_extractor |
|
mask_roi_extractor = head.mask_roi_extractor |
|
_check_roi_extractor(mask_roi_cfg, mask_roi_extractor, |
|
bbox_roi_extractor) |
|
|
|
|
|
mask_head = head.mask_head |
|
mask_cfg = config.mask_head |
|
_check_mask_head(mask_cfg, mask_head) |
|
|
|
|
|
if config['type'] in ['CascadeRoIHead', 'HybridTaskCascadeRoIHead']: |
|
assert config.num_stages == len(head.bbox_head) |
|
assert config.num_stages == len(head.bbox_roi_extractor) |
|
|
|
if head.with_mask: |
|
assert config.num_stages == len(head.mask_head) |
|
assert config.num_stages == len(head.mask_roi_extractor) |
|
|
|
elif config['type'] in ['MaskScoringRoIHead']: |
|
assert (hasattr(head, 'mask_iou_head') |
|
and head.mask_iou_head is not None) |
|
mask_iou_cfg = config.mask_iou_head |
|
mask_iou_head = head.mask_iou_head |
|
assert (mask_iou_cfg.fc_out_channels == |
|
mask_iou_head.fc_mask_iou.in_features) |
|
|
|
elif config['type'] in ['GridRoIHead']: |
|
grid_roi_cfg = config.grid_roi_extractor |
|
grid_roi_extractor = head.grid_roi_extractor |
|
_check_roi_extractor(grid_roi_cfg, grid_roi_extractor, |
|
bbox_roi_extractor) |
|
|
|
config.grid_head.grid_points = head.grid_head.grid_points |
|
|
|
|
|
def _check_roi_extractor(config, roi_extractor, prev_roi_extractor=None): |
|
import torch.nn as nn |
|
|
|
if isinstance(roi_extractor, nn.ModuleList): |
|
roi_extractor = roi_extractor[0] |
|
if prev_roi_extractor and isinstance(prev_roi_extractor, nn.ModuleList): |
|
prev_roi_extractor = prev_roi_extractor[0] |
|
|
|
assert (len(config.featmap_strides) == len(roi_extractor.roi_layers)) |
|
assert (config.out_channels == roi_extractor.out_channels) |
|
from torch.nn.modules.utils import _pair |
|
assert (_pair(config.roi_layer.output_size) == |
|
roi_extractor.roi_layers[0].output_size) |
|
|
|
if 'use_torchvision' in config.roi_layer: |
|
assert (config.roi_layer.use_torchvision == |
|
roi_extractor.roi_layers[0].use_torchvision) |
|
elif 'aligned' in config.roi_layer: |
|
assert ( |
|
config.roi_layer.aligned == roi_extractor.roi_layers[0].aligned) |
|
|
|
if prev_roi_extractor: |
|
assert (roi_extractor.roi_layers[0].aligned == |
|
prev_roi_extractor.roi_layers[0].aligned) |
|
assert (roi_extractor.roi_layers[0].use_torchvision == |
|
prev_roi_extractor.roi_layers[0].use_torchvision) |
|
|
|
|
|
def _check_mask_head(mask_cfg, mask_head): |
|
import torch.nn as nn |
|
if isinstance(mask_cfg, list): |
|
for single_mask_cfg, single_mask_head in zip(mask_cfg, mask_head): |
|
_check_mask_head(single_mask_cfg, single_mask_head) |
|
elif isinstance(mask_head, nn.ModuleList): |
|
for single_mask_head in mask_head: |
|
_check_mask_head(mask_cfg, single_mask_head) |
|
else: |
|
assert mask_cfg['type'] == mask_head.__class__.__name__ |
|
assert mask_cfg.in_channels == mask_head.in_channels |
|
class_agnostic = mask_cfg.get('class_agnostic', False) |
|
out_dim = (1 if class_agnostic else mask_cfg.num_classes) |
|
if hasattr(mask_head, 'conv_logits'): |
|
assert (mask_cfg.conv_out_channels == |
|
mask_head.conv_logits.in_channels) |
|
assert mask_head.conv_logits.out_channels == out_dim |
|
else: |
|
assert mask_cfg.fc_out_channels == mask_head.fc_logits.in_features |
|
assert (mask_head.fc_logits.out_features == out_dim * |
|
mask_head.output_area) |
|
|
|
|
|
def _check_bbox_head(bbox_cfg, bbox_head): |
|
import torch.nn as nn |
|
if isinstance(bbox_cfg, list): |
|
for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head): |
|
_check_bbox_head(single_bbox_cfg, single_bbox_head) |
|
elif isinstance(bbox_head, nn.ModuleList): |
|
for single_bbox_head in bbox_head: |
|
_check_bbox_head(bbox_cfg, single_bbox_head) |
|
else: |
|
assert bbox_cfg['type'] == bbox_head.__class__.__name__ |
|
if bbox_cfg['type'] == 'SABLHead': |
|
assert bbox_cfg.cls_in_channels == bbox_head.cls_in_channels |
|
assert bbox_cfg.reg_in_channels == bbox_head.reg_in_channels |
|
|
|
cls_out_channels = bbox_cfg.get('cls_out_channels', 1024) |
|
assert (cls_out_channels == bbox_head.fc_cls.in_features) |
|
assert (bbox_cfg.num_classes + 1 == bbox_head.fc_cls.out_features) |
|
|
|
elif bbox_cfg['type'] == 'DIIHead': |
|
assert bbox_cfg['num_ffn_fcs'] == bbox_head.ffn.num_fcs |
|
|
|
assert bbox_cfg['num_cls_fcs'] == len(bbox_head.cls_fcs) // 3 |
|
assert bbox_cfg['num_reg_fcs'] == len(bbox_head.reg_fcs) // 3 |
|
assert bbox_cfg['in_channels'] == bbox_head.in_channels |
|
assert bbox_cfg['in_channels'] == bbox_head.fc_cls.in_features |
|
assert bbox_cfg['in_channels'] == bbox_head.fc_reg.in_features |
|
assert bbox_cfg['in_channels'] == bbox_head.attention.embed_dims |
|
assert bbox_cfg[ |
|
'feedforward_channels'] == bbox_head.ffn.feedforward_channels |
|
|
|
else: |
|
assert bbox_cfg.in_channels == bbox_head.in_channels |
|
with_cls = bbox_cfg.get('with_cls', True) |
|
|
|
if with_cls: |
|
fc_out_channels = bbox_cfg.get('fc_out_channels', 2048) |
|
assert (fc_out_channels == bbox_head.fc_cls.in_features) |
|
assert (bbox_cfg.num_classes + |
|
1 == bbox_head.fc_cls.out_features) |
|
with_reg = bbox_cfg.get('with_reg', True) |
|
if with_reg: |
|
out_dim = (4 if bbox_cfg.reg_class_agnostic else 4 * |
|
bbox_cfg.num_classes) |
|
assert bbox_head.fc_reg.out_features == out_dim |
|
|
|
|
|
def _check_anchorhead(config, head): |
|
|
|
assert config['type'] == head.__class__.__name__ |
|
assert config.in_channels == head.in_channels |
|
|
|
num_classes = ( |
|
config.num_classes - |
|
1 if config.loss_cls.get('use_sigmoid', False) else config.num_classes) |
|
if config['type'] == 'ATSSHead': |
|
assert (config.feat_channels == head.atss_cls.in_channels) |
|
assert (config.feat_channels == head.atss_reg.in_channels) |
|
assert (config.feat_channels == head.atss_centerness.in_channels) |
|
elif config['type'] == 'SABLRetinaHead': |
|
assert (config.feat_channels == head.retina_cls.in_channels) |
|
assert (config.feat_channels == head.retina_bbox_reg.in_channels) |
|
assert (config.feat_channels == head.retina_bbox_cls.in_channels) |
|
else: |
|
assert (config.in_channels == head.conv_cls.in_channels) |
|
assert (config.in_channels == head.conv_reg.in_channels) |
|
assert (head.conv_cls.out_channels == num_classes * head.num_anchors) |
|
assert head.fc_reg.out_channels == 4 * head.num_anchors |
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
'config_rpath', |
|
[ |
|
'wider_face/ssd300_wider_face.py', |
|
'pascal_voc/ssd300_voc0712.py', |
|
'pascal_voc/ssd512_voc0712.py', |
|
|
|
'foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py', |
|
'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py', |
|
'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py', |
|
'fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py' |
|
]) |
|
def test_config_data_pipeline(config_rpath): |
|
"""Test whether the data pipeline is valid and can process corner cases. |
|
|
|
CommandLine: |
|
xdoctest -m tests/test_runtime/ |
|
test_config.py test_config_build_data_pipeline |
|
""" |
|
from mmcv import Config |
|
from mmdet.datasets.pipelines import Compose |
|
import numpy as np |
|
|
|
config_dpath = _get_config_directory() |
|
print(f'Found config_dpath = {config_dpath}') |
|
|
|
def dummy_masks(h, w, num_obj=3, mode='bitmap'): |
|
assert mode in ('polygon', 'bitmap') |
|
if mode == 'bitmap': |
|
masks = np.random.randint(0, 2, (num_obj, h, w), dtype=np.uint8) |
|
masks = BitmapMasks(masks, h, w) |
|
else: |
|
masks = [] |
|
for i in range(num_obj): |
|
masks.append([]) |
|
masks[-1].append( |
|
np.random.uniform(0, min(h - 1, w - 1), (8 + 4 * i, ))) |
|
masks[-1].append( |
|
np.random.uniform(0, min(h - 1, w - 1), (10 + 4 * i, ))) |
|
masks = PolygonMasks(masks, h, w) |
|
return masks |
|
|
|
config_fpath = join(config_dpath, config_rpath) |
|
cfg = Config.fromfile(config_fpath) |
|
|
|
|
|
loading_pipeline = cfg.train_pipeline.pop(0) |
|
loading_ann_pipeline = cfg.train_pipeline.pop(0) |
|
cfg.test_pipeline.pop(0) |
|
|
|
train_pipeline = Compose(cfg.train_pipeline) |
|
test_pipeline = Compose(cfg.test_pipeline) |
|
|
|
print(f'Building data pipeline, config_fpath = {config_fpath}') |
|
|
|
print(f'Test training data pipeline: \n{train_pipeline!r}') |
|
img = np.random.randint(0, 255, size=(888, 666, 3), dtype=np.uint8) |
|
if loading_pipeline.get('to_float32', False): |
|
img = img.astype(np.float32) |
|
mode = 'bitmap' if loading_ann_pipeline.get('poly2mask', |
|
True) else 'polygon' |
|
results = dict( |
|
filename='test_img.png', |
|
ori_filename='test_img.png', |
|
img=img, |
|
img_shape=img.shape, |
|
ori_shape=img.shape, |
|
gt_bboxes=np.array([[35.2, 11.7, 39.7, 15.7]], dtype=np.float32), |
|
gt_labels=np.array([1], dtype=np.int64), |
|
gt_masks=dummy_masks(img.shape[0], img.shape[1], mode=mode), |
|
) |
|
results['img_fields'] = ['img'] |
|
results['bbox_fields'] = ['gt_bboxes'] |
|
results['mask_fields'] = ['gt_masks'] |
|
output_results = train_pipeline(results) |
|
assert output_results is not None |
|
|
|
print(f'Test testing data pipeline: \n{test_pipeline!r}') |
|
results = dict( |
|
filename='test_img.png', |
|
ori_filename='test_img.png', |
|
img=img, |
|
img_shape=img.shape, |
|
ori_shape=img.shape, |
|
gt_bboxes=np.array([[35.2, 11.7, 39.7, 15.7]], dtype=np.float32), |
|
gt_labels=np.array([1], dtype=np.int64), |
|
gt_masks=dummy_masks(img.shape[0], img.shape[1], mode=mode), |
|
) |
|
results['img_fields'] = ['img'] |
|
results['bbox_fields'] = ['gt_bboxes'] |
|
results['mask_fields'] = ['gt_masks'] |
|
output_results = test_pipeline(results) |
|
assert output_results is not None |
|
|
|
|
|
print('Test empty GT with training data pipeline: ' |
|
f'\n{train_pipeline!r}') |
|
results = dict( |
|
filename='test_img.png', |
|
ori_filename='test_img.png', |
|
img=img, |
|
img_shape=img.shape, |
|
ori_shape=img.shape, |
|
gt_bboxes=np.zeros((0, 4), dtype=np.float32), |
|
gt_labels=np.array([], dtype=np.int64), |
|
gt_masks=dummy_masks(img.shape[0], img.shape[1], num_obj=0, mode=mode), |
|
) |
|
results['img_fields'] = ['img'] |
|
results['bbox_fields'] = ['gt_bboxes'] |
|
results['mask_fields'] = ['gt_masks'] |
|
output_results = train_pipeline(results) |
|
assert output_results is not None |
|
|
|
print(f'Test empty GT with testing data pipeline: \n{test_pipeline!r}') |
|
results = dict( |
|
filename='test_img.png', |
|
ori_filename='test_img.png', |
|
img=img, |
|
img_shape=img.shape, |
|
ori_shape=img.shape, |
|
gt_bboxes=np.zeros((0, 4), dtype=np.float32), |
|
gt_labels=np.array([], dtype=np.int64), |
|
gt_masks=dummy_masks(img.shape[0], img.shape[1], num_obj=0, mode=mode), |
|
) |
|
results['img_fields'] = ['img'] |
|
results['bbox_fields'] = ['gt_bboxes'] |
|
results['mask_fields'] = ['gt_masks'] |
|
output_results = test_pipeline(results) |
|
assert output_results is not None |
|
|