File size: 16,823 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
from os.path import dirname, exists, join, relpath
from unittest.mock import Mock
import pytest
import torch
from mmcv.runner import build_optimizer
from mmdet.core import BitmapMasks, PolygonMasks
from mmdet.datasets.builder import DATASETS
from mmdet.datasets.utils import NumClassCheckHook
def _get_config_directory():
"""Find the predefined detector config directory."""
try:
# Assume we are running in the source mmdetection repo
repo_dpath = dirname(dirname(__file__))
repo_dpath = join(repo_dpath, '..')
except NameError:
# For IPython development when this __file__ is not defined
import mmdet
repo_dpath = dirname(dirname(mmdet.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def _check_numclasscheckhook(detector, config_mod):
dummy_runner = Mock()
dummy_runner.model = detector
def get_dataset_name_classes(dataset):
# deal with `RepeatDataset`,`ConcatDataset`,`ClassBalancedDataset`..
if isinstance(dataset, (list, tuple)):
dataset = dataset[0]
while ('dataset' in dataset):
dataset = dataset['dataset']
# ConcatDataset
if isinstance(dataset, (list, tuple)):
dataset = dataset[0]
return dataset['type'], dataset.get('classes', None)
compatible_check = NumClassCheckHook()
dataset_name, CLASSES = get_dataset_name_classes(
config_mod['data']['train'])
if CLASSES is None:
CLASSES = DATASETS.get(dataset_name).CLASSES
dummy_runner.data_loader.dataset.CLASSES = CLASSES
compatible_check.before_train_epoch(dummy_runner)
dummy_runner.data_loader.dataset.CLASSES = None
compatible_check.before_train_epoch(dummy_runner)
dataset_name, CLASSES = get_dataset_name_classes(config_mod['data']['val'])
if CLASSES is None:
CLASSES = DATASETS.get(dataset_name).CLASSES
dummy_runner.data_loader.dataset.CLASSES = CLASSES
compatible_check.before_val_epoch(dummy_runner)
dummy_runner.data_loader.dataset.CLASSES = None
compatible_check.before_val_epoch(dummy_runner)
def test_config_build_detector():
"""Test that all detection models defined in the configs can be
initialized."""
from mmcv import Config
from mmdet.models import build_detector
config_dpath = _get_config_directory()
print(f'Found config_dpath = {config_dpath}')
import glob
config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py')))
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
config_names = [relpath(p, config_dpath) for p in config_fpaths]
print(f'Using {len(config_names)} config files')
for config_fname in config_names:
config_fpath = join(config_dpath, config_fname)
config_mod = Config.fromfile(config_fpath)
config_mod.model
print(f'Building detector, config_fpath = {config_fpath}')
# Remove pretrained keys to allow for testing in an offline environment
if 'pretrained' in config_mod.model:
config_mod.model['pretrained'] = None
detector = build_detector(config_mod.model)
assert detector is not None
_check_numclasscheckhook(detector, config_mod)
optimizer = build_optimizer(detector, config_mod.optimizer)
assert isinstance(optimizer, torch.optim.Optimizer)
if 'roi_head' in config_mod.model.keys():
# for two stage detector
# detectors must have bbox head
assert detector.roi_head.with_bbox and detector.with_bbox
assert detector.roi_head.with_mask == detector.with_mask
head_config = config_mod.model['roi_head']
_check_roi_head(head_config, detector.roi_head)
# else:
# # for single stage detector
# # detectors must have bbox head
# # assert detector.with_bbox
# head_config = config_mod.model['bbox_head']
# _check_bbox_head(head_config, detector.bbox_head)
def _check_roi_head(config, head):
# check consistency between head_config and roi_head
assert config['type'] == head.__class__.__name__
# check roi_align
bbox_roi_cfg = config.bbox_roi_extractor
bbox_roi_extractor = head.bbox_roi_extractor
_check_roi_extractor(bbox_roi_cfg, bbox_roi_extractor)
# check bbox head infos
bbox_cfg = config.bbox_head
bbox_head = head.bbox_head
_check_bbox_head(bbox_cfg, bbox_head)
if head.with_mask:
# check roi_align
if config.mask_roi_extractor:
mask_roi_cfg = config.mask_roi_extractor
mask_roi_extractor = head.mask_roi_extractor
_check_roi_extractor(mask_roi_cfg, mask_roi_extractor,
bbox_roi_extractor)
# check mask head infos
mask_head = head.mask_head
mask_cfg = config.mask_head
_check_mask_head(mask_cfg, mask_head)
# check arch specific settings, e.g., cascade/htc
if config['type'] in ['CascadeRoIHead', 'HybridTaskCascadeRoIHead']:
assert config.num_stages == len(head.bbox_head)
assert config.num_stages == len(head.bbox_roi_extractor)
if head.with_mask:
assert config.num_stages == len(head.mask_head)
assert config.num_stages == len(head.mask_roi_extractor)
elif config['type'] in ['MaskScoringRoIHead']:
assert (hasattr(head, 'mask_iou_head')
and head.mask_iou_head is not None)
mask_iou_cfg = config.mask_iou_head
mask_iou_head = head.mask_iou_head
assert (mask_iou_cfg.fc_out_channels ==
mask_iou_head.fc_mask_iou.in_features)
elif config['type'] in ['GridRoIHead']:
grid_roi_cfg = config.grid_roi_extractor
grid_roi_extractor = head.grid_roi_extractor
_check_roi_extractor(grid_roi_cfg, grid_roi_extractor,
bbox_roi_extractor)
config.grid_head.grid_points = head.grid_head.grid_points
def _check_roi_extractor(config, roi_extractor, prev_roi_extractor=None):
import torch.nn as nn
# Separate roi_extractor and prev_roi_extractor checks for flexibility
if isinstance(roi_extractor, nn.ModuleList):
roi_extractor = roi_extractor[0]
if prev_roi_extractor and isinstance(prev_roi_extractor, nn.ModuleList):
prev_roi_extractor = prev_roi_extractor[0]
assert (len(config.featmap_strides) == len(roi_extractor.roi_layers))
assert (config.out_channels == roi_extractor.out_channels)
from torch.nn.modules.utils import _pair
assert (_pair(config.roi_layer.output_size) ==
roi_extractor.roi_layers[0].output_size)
if 'use_torchvision' in config.roi_layer:
assert (config.roi_layer.use_torchvision ==
roi_extractor.roi_layers[0].use_torchvision)
elif 'aligned' in config.roi_layer:
assert (
config.roi_layer.aligned == roi_extractor.roi_layers[0].aligned)
if prev_roi_extractor:
assert (roi_extractor.roi_layers[0].aligned ==
prev_roi_extractor.roi_layers[0].aligned)
assert (roi_extractor.roi_layers[0].use_torchvision ==
prev_roi_extractor.roi_layers[0].use_torchvision)
def _check_mask_head(mask_cfg, mask_head):
import torch.nn as nn
if isinstance(mask_cfg, list):
for single_mask_cfg, single_mask_head in zip(mask_cfg, mask_head):
_check_mask_head(single_mask_cfg, single_mask_head)
elif isinstance(mask_head, nn.ModuleList):
for single_mask_head in mask_head:
_check_mask_head(mask_cfg, single_mask_head)
else:
assert mask_cfg['type'] == mask_head.__class__.__name__
assert mask_cfg.in_channels == mask_head.in_channels
class_agnostic = mask_cfg.get('class_agnostic', False)
out_dim = (1 if class_agnostic else mask_cfg.num_classes)
if hasattr(mask_head, 'conv_logits'):
assert (mask_cfg.conv_out_channels ==
mask_head.conv_logits.in_channels)
assert mask_head.conv_logits.out_channels == out_dim
else:
assert mask_cfg.fc_out_channels == mask_head.fc_logits.in_features
assert (mask_head.fc_logits.out_features == out_dim *
mask_head.output_area)
def _check_bbox_head(bbox_cfg, bbox_head):
import torch.nn as nn
if isinstance(bbox_cfg, list):
for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
_check_bbox_head(single_bbox_cfg, single_bbox_head)
elif isinstance(bbox_head, nn.ModuleList):
for single_bbox_head in bbox_head:
_check_bbox_head(bbox_cfg, single_bbox_head)
else:
assert bbox_cfg['type'] == bbox_head.__class__.__name__
if bbox_cfg['type'] == 'SABLHead':
assert bbox_cfg.cls_in_channels == bbox_head.cls_in_channels
assert bbox_cfg.reg_in_channels == bbox_head.reg_in_channels
cls_out_channels = bbox_cfg.get('cls_out_channels', 1024)
assert (cls_out_channels == bbox_head.fc_cls.in_features)
assert (bbox_cfg.num_classes + 1 == bbox_head.fc_cls.out_features)
elif bbox_cfg['type'] == 'DIIHead':
assert bbox_cfg['num_ffn_fcs'] == bbox_head.ffn.num_fcs
# 3 means FC and LN and Relu
assert bbox_cfg['num_cls_fcs'] == len(bbox_head.cls_fcs) // 3
assert bbox_cfg['num_reg_fcs'] == len(bbox_head.reg_fcs) // 3
assert bbox_cfg['in_channels'] == bbox_head.in_channels
assert bbox_cfg['in_channels'] == bbox_head.fc_cls.in_features
assert bbox_cfg['in_channels'] == bbox_head.fc_reg.in_features
assert bbox_cfg['in_channels'] == bbox_head.attention.embed_dims
assert bbox_cfg[
'feedforward_channels'] == bbox_head.ffn.feedforward_channels
else:
assert bbox_cfg.in_channels == bbox_head.in_channels
with_cls = bbox_cfg.get('with_cls', True)
if with_cls:
fc_out_channels = bbox_cfg.get('fc_out_channels', 2048)
assert (fc_out_channels == bbox_head.fc_cls.in_features)
assert (bbox_cfg.num_classes +
1 == bbox_head.fc_cls.out_features)
with_reg = bbox_cfg.get('with_reg', True)
if with_reg:
out_dim = (4 if bbox_cfg.reg_class_agnostic else 4 *
bbox_cfg.num_classes)
assert bbox_head.fc_reg.out_features == out_dim
def _check_anchorhead(config, head):
# check consistency between head_config and roi_head
assert config['type'] == head.__class__.__name__
assert config.in_channels == head.in_channels
num_classes = (
config.num_classes -
1 if config.loss_cls.get('use_sigmoid', False) else config.num_classes)
if config['type'] == 'ATSSHead':
assert (config.feat_channels == head.atss_cls.in_channels)
assert (config.feat_channels == head.atss_reg.in_channels)
assert (config.feat_channels == head.atss_centerness.in_channels)
elif config['type'] == 'SABLRetinaHead':
assert (config.feat_channels == head.retina_cls.in_channels)
assert (config.feat_channels == head.retina_bbox_reg.in_channels)
assert (config.feat_channels == head.retina_bbox_cls.in_channels)
else:
assert (config.in_channels == head.conv_cls.in_channels)
assert (config.in_channels == head.conv_reg.in_channels)
assert (head.conv_cls.out_channels == num_classes * head.num_anchors)
assert head.fc_reg.out_channels == 4 * head.num_anchors
# Only tests a representative subset of configurations
# TODO: test pipelines using Albu, current Albu throw None given empty GT
@pytest.mark.parametrize(
'config_rpath',
[
'wider_face/ssd300_wider_face.py',
'pascal_voc/ssd300_voc0712.py',
'pascal_voc/ssd512_voc0712.py',
# 'albu_example/mask_rcnn_r50_fpn_1x.py',
'foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py',
'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py',
'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py',
'fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py'
])
def test_config_data_pipeline(config_rpath):
"""Test whether the data pipeline is valid and can process corner cases.
CommandLine:
xdoctest -m tests/test_runtime/
test_config.py test_config_build_data_pipeline
"""
from mmcv import Config
from mmdet.datasets.pipelines import Compose
import numpy as np
config_dpath = _get_config_directory()
print(f'Found config_dpath = {config_dpath}')
def dummy_masks(h, w, num_obj=3, mode='bitmap'):
assert mode in ('polygon', 'bitmap')
if mode == 'bitmap':
masks = np.random.randint(0, 2, (num_obj, h, w), dtype=np.uint8)
masks = BitmapMasks(masks, h, w)
else:
masks = []
for i in range(num_obj):
masks.append([])
masks[-1].append(
np.random.uniform(0, min(h - 1, w - 1), (8 + 4 * i, )))
masks[-1].append(
np.random.uniform(0, min(h - 1, w - 1), (10 + 4 * i, )))
masks = PolygonMasks(masks, h, w)
return masks
config_fpath = join(config_dpath, config_rpath)
cfg = Config.fromfile(config_fpath)
# remove loading pipeline
loading_pipeline = cfg.train_pipeline.pop(0)
loading_ann_pipeline = cfg.train_pipeline.pop(0)
cfg.test_pipeline.pop(0)
train_pipeline = Compose(cfg.train_pipeline)
test_pipeline = Compose(cfg.test_pipeline)
print(f'Building data pipeline, config_fpath = {config_fpath}')
print(f'Test training data pipeline: \n{train_pipeline!r}')
img = np.random.randint(0, 255, size=(888, 666, 3), dtype=np.uint8)
if loading_pipeline.get('to_float32', False):
img = img.astype(np.float32)
mode = 'bitmap' if loading_ann_pipeline.get('poly2mask',
True) else 'polygon'
results = dict(
filename='test_img.png',
ori_filename='test_img.png',
img=img,
img_shape=img.shape,
ori_shape=img.shape,
gt_bboxes=np.array([[35.2, 11.7, 39.7, 15.7]], dtype=np.float32),
gt_labels=np.array([1], dtype=np.int64),
gt_masks=dummy_masks(img.shape[0], img.shape[1], mode=mode),
)
results['img_fields'] = ['img']
results['bbox_fields'] = ['gt_bboxes']
results['mask_fields'] = ['gt_masks']
output_results = train_pipeline(results)
assert output_results is not None
print(f'Test testing data pipeline: \n{test_pipeline!r}')
results = dict(
filename='test_img.png',
ori_filename='test_img.png',
img=img,
img_shape=img.shape,
ori_shape=img.shape,
gt_bboxes=np.array([[35.2, 11.7, 39.7, 15.7]], dtype=np.float32),
gt_labels=np.array([1], dtype=np.int64),
gt_masks=dummy_masks(img.shape[0], img.shape[1], mode=mode),
)
results['img_fields'] = ['img']
results['bbox_fields'] = ['gt_bboxes']
results['mask_fields'] = ['gt_masks']
output_results = test_pipeline(results)
assert output_results is not None
# test empty GT
print('Test empty GT with training data pipeline: '
f'\n{train_pipeline!r}')
results = dict(
filename='test_img.png',
ori_filename='test_img.png',
img=img,
img_shape=img.shape,
ori_shape=img.shape,
gt_bboxes=np.zeros((0, 4), dtype=np.float32),
gt_labels=np.array([], dtype=np.int64),
gt_masks=dummy_masks(img.shape[0], img.shape[1], num_obj=0, mode=mode),
)
results['img_fields'] = ['img']
results['bbox_fields'] = ['gt_bboxes']
results['mask_fields'] = ['gt_masks']
output_results = train_pipeline(results)
assert output_results is not None
print(f'Test empty GT with testing data pipeline: \n{test_pipeline!r}')
results = dict(
filename='test_img.png',
ori_filename='test_img.png',
img=img,
img_shape=img.shape,
ori_shape=img.shape,
gt_bboxes=np.zeros((0, 4), dtype=np.float32),
gt_labels=np.array([], dtype=np.int64),
gt_masks=dummy_masks(img.shape[0], img.shape[1], num_obj=0, mode=mode),
)
results['img_fields'] = ['img']
results['bbox_fields'] = ['gt_bboxes']
results['mask_fields'] = ['gt_masks']
output_results = test_pipeline(results)
assert output_results is not None
|