Spaces:
Runtime error
Runtime error
import base64 | |
import json | |
from datetime import datetime | |
import torch | |
import spaces | |
from PIL import Image, ImageDraw | |
from qwen_vl_utils import process_vision_info | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer | |
from PIL import Image | |
import ast | |
import os | |
from datetime import datetime | |
import numpy as np | |
from huggingface_hub import hf_hub_download, list_repo_files | |
import gradio as gr | |
import time | |
# Define constants | |
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
MIN_PIXELS = 256 * 28 * 28 | |
MAX_PIXELS = 1344 * 28 * 28 | |
# Specify the model repository and destination folder | |
model_repo = "showlab/ShowUI-2B" | |
destination_folder = "./showui-2b" | |
# Ensure the destination folder exists | |
os.makedirs(destination_folder, exist_ok=True) | |
# List all files in the repository | |
files = list_repo_files(repo_id=model_repo) | |
# Download each file to the destination folder | |
for file in files: | |
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) | |
print(f"Downloaded {file} to {file_path}") | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"./showui-2b", | |
# "showlab/ShowUI-2B", | |
torch_dtype=torch.bfloat16, | |
device_map="cuda", | |
) | |
# Load the processor | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) | |
model_moon = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", revision="2025-01-09", trust_remote_code=True, device_map={"": "cuda"}) | |
# Helper functions | |
def draw_point(image_input, point=None, radius=5): | |
"""Draw a point on the image.""" | |
if isinstance(image_input, str): | |
image = Image.open(image_input) | |
else: | |
image = Image.fromarray(np.uint8(image_input)) | |
if point: | |
x, y = point[0] * image.width, point[1] * image.height | |
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill="red") | |
return image | |
def array_to_image_path(image_array): | |
"""Save the uploaded image and return its path.""" | |
if image_array is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
img = Image.fromarray(np.uint8(image_array)) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
img.save(filename) | |
return os.path.abspath(filename) | |
def infer_moon(img, query): | |
start = time.time() | |
image = Image.fromarray(np.uint8(img)) | |
points = model_moon.point(image, query)["points"] | |
converted_data = [round(points[0]["x"], 2), round(points[0]["y"], 2)] | |
end = time.time() | |
total_time = end - start | |
return converted_data, f"{round(total_time, 2)} seconds" | |
def infer_showui(image_path, query): | |
start = time.time() | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": _SYSTEM}, | |
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, | |
{"type": "text", "text": query}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") | |
inputs = inputs.to("cuda") | |
# Generate output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
# Parse the output into coordinates | |
click_xy = ast.literal_eval(output_text) | |
end = time.time() | |
total_time = end - start | |
return click_xy, f"{round(total_time, 2)} seconds" | |
def run(image, query): | |
"""Main function for inference.""" | |
image_path = array_to_image_path(image) | |
moon, time_taken_moon = infer_moon(image, query) | |
showui, time_taken_showui = infer_showui(image_path, query) | |
# Draw the point on the image | |
result_image = draw_point(image_path, showui, radius=10) | |
result_moon_image = draw_point(image_path, moon, radius=10) | |
return result_image, time_taken_showui, result_moon_image, time_taken_moon | |
def build_demo(): | |
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo: | |
# State to store the consistent image path | |
state_image_path = gr.State(value=None) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
# Input components | |
imagebox = gr.Image(type="numpy", label="Input Screenshot") | |
textbox = gr.Textbox( | |
show_label=True, | |
placeholder="Enter a query (e.g., 'Click Nahant')", | |
label="Query", | |
) | |
submit_btn = gr.Button(value="Submit", variant="primary") | |
# Placeholder examples | |
gr.Examples( | |
examples=[ | |
["./examples/app_store.png", "Download Kindle."], | |
["./examples/ios_setting.png", "Turn off Do not disturb."], | |
["./examples/image_13.png", "Tap on vehicle search."], | |
["./examples/map.png", "Boston."], | |
["./examples/wallet.png", "Scan a QR code."], | |
["./examples/word.png", "More shapes."], | |
["./examples/web_shopping.png", "Proceed to checkout."], | |
["./examples/web_forum.png", "Post my comment."], | |
["./examples/safari_google.png", "Click on search bar."], | |
], | |
inputs=[imagebox, textbox], | |
examples_per_page=3, | |
) | |
with gr.Column(scale=8): | |
# Output components | |
output_img1 = gr.Image(type="pil", label="Show UI Output") | |
output_time1 = gr.Text(label="showui inference time") | |
output_img2 = gr.Image(type="pil", label="Moon dream Output") | |
output_time2 = gr.Text(label="moondream inference time") | |
# Add a note below the images to explain the red point | |
gr.HTML( | |
""" | |
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output images represents the predicted clickable coordinates.</p> | |
""" | |
) | |
# Buttons for voting, flagging, regenerating, and clearing | |
with gr.Row(elem_id="action-buttons", equal_height=True): | |
regenerate_btn = gr.Button(value="π Regenerate", variant="secondary") | |
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button | |
# Define button actions | |
def on_submit(image, query): | |
"""Handle the submit button click.""" | |
if image is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
# Generate consistent image path and store it in the state | |
image_path = array_to_image_path(image) | |
return run(image, query) + (image_path,) | |
submit_btn.click( | |
on_submit, | |
[imagebox, textbox], | |
[output_img1, output_time1, output_img2, output_time2, state_image_path], | |
) | |
clear_btn.click( | |
lambda: (None, None, None, None, None), | |
inputs=None, | |
outputs=[imagebox, textbox, output_img1, output_img2, state_image_path], # Clear all outputs | |
queue=False, | |
) | |
regenerate_btn.click( | |
lambda image, query, state_image_path: run(image, query), | |
[imagebox, textbox, state_image_path], | |
[output_img1, output_time1, output_img2, output_time2], | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = build_demo() | |
demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False, debug=True, share=True) | |